690 research outputs found

    Dynamical generation of dark solitons in spin-orbit-coupled Bose-Einstein condensates

    Get PDF
    We numerically investigate the ground state, the Raman-driving dynamics and the nonlinear excitations of a realized spin-orbit-coupled Bose-Einstein condensate in a one-dimensional harmonic trap. Depending on the Raman coupling and the interatomic interactions, three ground-state phases are identified: stripe, plane wave and zero-momentum phases. A narrow parameter regime with coexistence of stripe and zero-momentum or plane wave phases in real space is found. Several sweep progresses across different phases by driving the Raman coupling linearly in time is simulated and the non-equilibrium dynamics of the system in these sweeps are studied. We find kinds of nonlinear excitations, with the particular dark solitons excited in the sweep from the stripe phase to the plane wave or zero-momentum phase within the trap. Moreover, the number and the stability of the dark solitons can be controlled in the driving, which provide a direct and easy way to generate dark solitons and study their dynamics and interaction properties.Comment: 10 pages, 9 figur

    Superfluid and magnetic states of an ultracold Bose gas with synthetic three-dimensional spin-orbit coupling in an optical lattice

    Get PDF
    We study ultracold bosonic atoms with the synthetic three-dimensional spin-orbit (SO) coupling in a cubic optical lattice. In the superfluidity phase, the lowest energy band exhibits one, two or four pairs of degenerate single-particle ground states depending on the SO-coupling strengths, which can give rise to the condensate states with spin-stripes for the weak atomic interactions. In the deep Mott-insulator regime, the effective spin Hamiltonian of the system combines three-dimensional Heisenberg exchange interactions, anisotropy interactions and Dzyaloshinskii-Moriya interactions. Based on Monte Carlo simulations, we numerically demonstrate that the resulting Hamiltonian with an additional Zeeman field has a rich phase diagram with spiral, stripe, vortex crystal, and especially Skyrmion crystal spin-textures in each xy-plane layer. The obtained Skyrmion crystals can be tunable with square and hexagonal symmetries in a columnar manner along the z axis, and moreover are stable against the inter-layer spin-spin interactions in a large parameter region.Comment: 9 pages, 4 figures; title modified, references and discussions added; accepted by PR

    Valley-dependent gauge fields for ultracold atoms in square optical superlattices

    Get PDF
    We propose an experimental scheme to realize the valley-dependent gauge fields for ultracold fermionic atoms trapped in a state-dependent square optical lattice. Our scheme relies on two sets of Raman laser beams to engineer the hopping between adjacent sites populated by two-component fermionic atoms. One set of Raman beams are used to realize a staggered \pi-flux lattice, where low energy atoms near two inequivalent Dirac points should be described by the Dirac equation for spin-1/2 particles. Another set of laser beams with proper Rabi frequencies are added to further modulate the atomic hopping parameters. The hopping modulation will give rise to effective gauge potentials with opposite signs near the two valleys, mimicking the interesting strain-induced pseudo-gauge fields in graphene. The proposed valley-dependent gauge fields are tunable and provide a new route to realize quantum valley Hall effects and atomic valleytronics.Comment: 5+ pages, 2 figures; language polished, references and discussions added; accepted by PR

    Entanglement dynamics of two-qubit system in different types of noisy channels

    Full text link
    In this paper, we study entanglement dynamics of a two-qubit extended Werner-like state locally interacting with independent noisy channels, i.e., amplitude damping, phase damping and depolarizing channels. We show that the purity of initial entangled state has direct impacts on the entanglement robustness in each noisy channel. That is, if the initial entangled state is prepared in mixed instead of pure form, the state may exhibit entanglement sudden death (ESD) and/or be decreased for the critical probability at which the entanglement disappear.Comment: 11 pages, 6 figure

    Entanglement and quantum phase transition in alternating XY spin chain with next-nearest neighbour interactions

    Full text link
    By using the method of density-matrix renormalization-group to solve the different spin-spin correlation functions, the nearest-neighbouring entanglement(NNE) and next-nearest-neighbouring entanglement(NNNE) of one-dimensional alternating Heisenberg XY spin chain is investigated in the presence of alternating nearest neighbour interactions of exchange couplings, external magnetic fields and next-nearest neighbouring interactions. For dimerized ferromagnetic spin chain, NNNE appears only above the critical dimerized interaction, meanwhile, the dimerized interaction effects quantum phase transition point and improves NNNE to a large value. We also study the effect of ferromagnetic or antiferromagnetic next-nearest neighboring (NNN) interactions on the dynamics of NNE and NNNE. The ferromagnetic NNN interaction increases and shrinks NNE below and above critical frustrated interaction respectively, while the antiferromagnetic NNN interaction always decreases NNE. The antiferromagnetic NNN interaction results to a larger value of NNNE in comparison to the case when the NNN interaction is ferromagnetic.Comment: 13 pages, 4 figures,. accepted by Chinese Physics B 2008 11 (in press

    Entanglement control in one-dimensional s=1/2s=1/2 random XY spin chain

    Full text link
    The entanglement in one-dimensional random XY spin systems where the impurities of exchange couplings and the external magnetic fields are considered as random variables is investigated by solving the different spin-spin correlation functions and the average magnetization per spin. The entanglement dynamics near particular locations of the system is also studied when the exchange couplings (or the external magnetic fields) satisfy three different distributions(the Gaussian distribution, double-Gaussian distribution, and bimodal distribution). We find that the entanglement can be controlled by varying the strength of external magnetic field and the different distributions of impurities. Moreover, the entanglement of some nearest-neighboring qubits can be increased for certain parameter values of the three different distributions.Comment: 13 pages, 4 figure

    Quantum electric-dipole liquid on a triangular lattice

    Get PDF
    Geometric frustrations and quantum mechanical fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets that represents an exotic phase of matter and is attracting enormous interests. Geometric frustrations and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogs to quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled small electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19, in which small electric dipoles originated from the off-center displacement of Fe3+ in the FeO5 bipyramids constitute a two-dimensional triangular lattice, represents a promising candidate to generate the anticipated electric-dipole liquid. We present a series of experimental evidences, including dielectric permittivity, heat capacity, and thermal conductivity measured down to 66 mK, to reveal the existence of a nontrivial ground state in BaFe12O19, characterized by itinerant low-energy excitations with a small gap, to which we interpret as an exotic liquid-like quantum phase. The quantum electric-dipole liquids in frustrated dielectrics open up a fresh playground for fundamental physics and may find applications in quantum information and computation as well.Comment: 13 pages, 6 figure
    • …
    corecore