88 research outputs found

    Correlation of the superconducting critical temperature with spin and orbital excitations in (CaxLa1− x)(Ba1. 75− xLa 0. 25) Cu3Oy as measured by resonant inelastic x-ray scattering

    Get PDF
    Electronic spin and orbital (dd) excitation spectra of (CaxLa1−x )(Ba1.75−xLa0.25+x)Cu3Oy samples are measured by resonant inelastic x-ray scattering (RIXS). In this compound, Tc of samples with identical hole dopings is strongly affected by the Ca/Ba substitution x due to subtle variations in the lattice constants, while crystal symmetry and disorder as measured by linewidths are x independent. We examine two extreme values of x and two extreme values of hole-doping content y corresponding to antiferromagnetic and superconducting states. The x dependence of the spin-mode energies is approximately the same for both the antiferromagnetic and superconducting samples. This clearly demonstrates that RIXS is sensitive to the superexchange J even in doped samples. A positive correlation between J and the maximum of Tc at optimal doping (T max c) is observed. We also measured the x dependence of the dxy→dx2−y2 and dxz/yz→dx2−y2 orbital splittings. We infer that the effect of the unresolved d3z2−r2→dx2→y2 excitation on T max c is much smaller than the effect of J. There appears to be dispersion in the dxy→dx2−y2 peak of up to 0.05 eV. Our fitting furthermore indicates an asymmetric dispersion for the dxz/yz→dx2−y2 excitation. A peak at ∼0.8 eV is also observed and attributed to a dd excitation in the chain layer

    Randomized trial of neoadjuvant vaccination with tumor-cell lysate induces T cell response in low-grade gliomas

    Get PDF
    BACKGROUND. Long-term prognosis of WHO grade II low-grade gliomas (LGGs) is poor, with a high risk of recurrence and malignant transformation into high-grade gliomas. Given the relatively intact immune system of patients with LGGs and the slow tumor growth rate, vaccines are an attractive treatment strategy. METHODS. We conducted a pilot study to evaluate the safety and immunological effects of vaccination with GBM6-AD, lysate of an allogeneic glioblastoma stem cell line, with poly-ICLC in patients with LGGs. Patients were randomized to receive the vaccines before surgery (arm 1) or not (arm 2) and all patients received adjuvant vaccines. Coprimary outcomes were to evaluate safety and immune response in the tumor. RESULTS. A total of 17 eligible patients were enrolled — 9 in arm 1 and 8 in arm 2. This regimen was well tolerated with no regimen-limiting toxicity. Neoadjuvant vaccination induced upregulation of type-1 cytokines and chemokines and increased activated CD8+ T cells in peripheral blood. Single-cell RNA/T cell receptor sequencing detected CD8+ T cell clones that expanded with effector phenotype and migrated into the tumor microenvironment (TME) in response to neoadjuvant vaccination. Mass cytometric analyses detected increased tissue resident–like CD8+ T cells with effector memory phenotype in the TME after the neoadjuvant vaccination. CONCLUSION. The regimen induced effector CD8+ T cell response in peripheral blood and enabled vaccine-reactive CD8+ T cells to migrate into the TME. Further refinements of the regimen may have to be integrated into future strategies

    Membrane-Anchored HIV-1 N-Heptad Repeat Peptides Are Highly Potent Cell Fusion Inhibitors via an Altered Mode of Action

    Get PDF
    Peptide inhibitors derived from HIV-gp41 envelope protein play a pivotal role in deciphering the molecular mechanism of HIV-cell fusion. According to accepted models, N-heptad repeat (NHR) peptides can bind two targets in an intermediate fusion conformation, thereby inhibiting progression of the fusion process. In both cases the orientation towards the endogenous intermediate conformation should be important. To test this, we anchored NHR to the cell membrane by conjugating fatty acids with increasing lengths to the N- or C-terminus of N36, as well as to two known N36 mutants; one that cannot bind C-heptad repeat (CHR) but can bind NHR (N36 MUTe,g), and the second cannot bind to either NHR or CHR (N36 MUTa,d). Importantly, the IC50 increased up to 100-fold in a lipopeptide-dependent manner. However, no preferred directionality was observed for the wild type derived lipopeptides, suggesting a planar orientation of the peptides as well as the endogenous NHR region on the cell membrane. Furthermore, based on: (i) specialized analysis of the inhibition curves, (ii) the finding that N36 conjugates reside more on the target cells that occupy the receptors, and (iii) the finding that N36 MUTe,g acts as a monomer both in its soluble form and when anchored to the cell membrane, we suggest that anchoring N36 to the cell changes the inhibitory mode from a trimer which can target both the endogenous NHR and CHR regions, to mainly monomeric lipopetides that target primarily the internal NHR. Besides shedding light on the mode of action of HIV-cell fusion, the similarity between functional regions in the envelopes of other viruses suggests a new approach for developing potent HIV-1 inhibitors

    A Feature-Based Approach to Modeling Protein–DNA Interactions

    Get PDF
    Transcription factor (TF) binding to its DNA target site is a fundamental regulatory interaction. The most common model used to represent TF binding specificities is a position specific scoring matrix (PSSM), which assumes independence between binding positions. However, in many cases, this simplifying assumption does not hold. Here, we present feature motif models (FMMs), a novel probabilistic method for modeling TF–DNA interactions, based on log-linear models. Our approach uses sequence features to represent TF binding specificities, where each feature may span multiple positions. We develop the mathematical formulation of our model and devise an algorithm for learning its structural features from binding site data. We also developed a discriminative motif finder, which discovers de novo FMMs that are enriched in target sets of sequences compared to background sets. We evaluate our approach on synthetic data and on the widely used TF chromatin immunoprecipitation (ChIP) dataset of Harbison et al. We then apply our algorithm to high-throughput TF ChIP data from mouse and human, reveal sequence features that are present in the binding specificities of mouse and human TFs, and show that FMMs explain TF binding significantly better than PSSMs. Our FMM learning and motif finder software are available at http://genie.weizmann.ac.il/
    • …
    corecore