64 research outputs found
Reversion of Epithelial-Mesenchymal Transition by a Novel Agent DZ-50 via IGF Binding Protein-3 in Prostate Cancer Cells
Dysregulation of transforming growth factor-β1 (TGF-β1) and insulin-like growth factor (IGF) axis has been linked to reactive stroma dynamics in prostate cancer progression. IGF binding protein-3 (IGFBP3) induction is initiated by stroma remodeling and could represent a potential therapeutic target for prostate cancer. In previous studies a lead quinazoline-based DoxazosinŽ derivative, DZ-50, impaired prostate tumor growth by targeting proteins involved in focal adhesion, anoikis resistance and epithelial-mesenchymal-transition (EMT). This study demonstrates that DZ-50 increased expression of the epithelial marker E-cadherin, and decreased the mesenchymal marker N-cadherin in human prostate cancer cells. In DU-145 cells, the effect of DZ-50 on EMT towards mesenchymal epithelial transition (MET) was inhibited by talin1 overexpression, a focal adhesion regulator promoting anoikis resistance and tumor invasion. DZ-50 treatment of human prostate cancer cells and cancer-associated fibroblasts (CAFs) downregulated IGFBP3 expression at mRNA and protein level. In TGF-β1 responsive LNCaPTβRII, TGF-β1 reversed DZ-50-induced MET by antagonizing the drug-induced decrease of nuclear IGFBP3. Furthermore, co-culture with CAFs promoted prostate cancer epithelial cell invasion, an effect that was significantly inhibited by DZ-50. Our findings demonstrate that the lead compound, DZ-50, inhibited the invasive properties of prostate cancer epithelial cells by targeting IGFBP3 and mediating EMT conversion to MET. This study integrated the mechanisms underlying the effect of DZ-50 and further supported the therapeutic value of this compound in the treatment of advanced metastatic prostate cancer
Prosaposin down-modulation decreases metastatic prostate cancer cell adhesion, migration, and invasion
<p>Abstract</p> <p>Background</p> <p>Factors responsible for invasive and metastatic progression of prostate cancer (PCa) remain largely unknown. Previously, we reported cloning of prosaposin (PSAP) and its genomic amplification and/or overexpression in several androgen-independent metastatic PCa cell lines and lymph node metastases. PSAP is the lysosomal precursor of saposins, which serve as activators for lysosomal hydrolases involved in the degradation of ceramide (Cer) and other sphingolipids.</p> <p>Results</p> <p>Our current data show that, in metastatic PCa cells, stable down-modulation of PSAP by RNA-interference via a lysosomal proteolysis-dependent pathway decreased β<sub>1A</sub>-integrin expression, its cell-surface clustering, and adhesion to basement membrane proteins; led to disassembly of focal adhesion complex; and decreased phosphorylative activity of focal adhesion kinase and its downstream adaptor molecule, paxillin. Cathepsin D (CathD) expression and proteolytic activity, migration, and invasion were also significantly decreased in PSAP knock-down cells. Transient-transfection studies with β<sub>1A </sub>integrin- or CathD-siRNA oligos confirmed the cause and effect relationship between PSAP and CathD or PSAP and Cer-β<sub>1A </sub>integrin, regulating PCa cell migration and invasion.</p> <p>Conclusion</p> <p>Our findings suggest that by a coordinated regulation of Cer levels, CathD and β<sub>1A</sub>-integrin expression, and attenuation of "inside-out" integrin-signaling pathway, PSAP is involved in PCa invasion and therefore might be used as a molecular target for PCa therapy.</p
Loss of Androgen Receptor-Dependent Growth Suppression by Prostate Cancer Cells Can Occur Independently from Acquiring Oncogenic Addiction to Androgen Receptor Signaling
The conversion of androgen receptor (AR) signaling as a mechanism of growth suppression of normal prostate epithelial cells to that of growth stimulation in prostate cancer cells is often associated with AR mutation, amplification and over-expression. Thus, down-regulation of AR signaling is commonly therapeutic for prostate cancer. The E006AA cell line was established from a hormone naĂŻve, localized prostate cancer. E006AA cells are genetically aneuploid and grow equally well when xenografted into either intact or castrated male NOG but not nude mice. These cells exhibit: 1) X chromosome duplication and AR gene amplification, although paradoxically not coupled with increased AR expression, and 2) somatic, dominant-negative Serine-599-Glycine loss-of-function mutation within the dimerization surface of the DNA binding domain of the AR gene. No effect on the growth of E006AA cells is observed using targeted knockdown of endogenous mutant AR, ectopic expression of wild-type AR, or treatment with androgens or anti-androgens. E006AA cells represent a prototype for a newly identified subtype of prostate cancer cells that exhibit a dominant-negative AR loss-of-function in a hormonally naĂŻve patient. Such loss-of-function eliminates AR-mediated growth suppression normally induced by normal physiological levels of androgens, thus producing a selective growth advantage for these malignant cells in hormonally naĂŻve patients. These data highlight that loss of AR-mediated growth suppression is an independent process, and that, without additional changes, is insufficient for acquiring oncogene addiction to AR signaling. Thus, patients with prostate cancer cells harboring such AR loss-of-function mutations will not benefit from aggressive hormone or anti-AR therapies even though they express AR protein
Serum Glutamate Levels Correlate with Gleason Score and Glutamate Blockade Decreases Proliferation, Migration, and Invasion and Induces Apoptosis in Prostate Cancer Cells
During glutaminolysis, glutamine is catabolized to glutamate and incorporated into citric acid cycle and lipogenesis. Serum glutamate levels were measured in patients with primary prostate cancer (PCa) or metastatic castrate-resistant PCa (mCRPCa) to establish clinical relevance. The effect of glutamate-deprivation or blockade by metabotropic glutamate receptor 1 (GRM1)-antagonists was investigated on PCa cellsâ growth, migration, and invasion to establish biological relevance
Identification of novel GRM1 mutations and single nucleotide polymorphisms in prostate cancer cell lines and tissues.
Metabotropic glutamate receptor 1 (GRM1) signaling has been implicated in benign and malignant disorders including prostate cancer (PCa). To further explore the role of genetic alterations of GRM1 in PCa, we screened the entire human GRM1 gene including coding sequence, exon-intron junctions, and flanking untranslated regions (UTRs) for the presence of mutations and single nucleotide polymorphisms (SNPs) in several PCa cell lines and matched tumor-normal tissues from Caucasian Americans (CAs) and African Americans (AAs). We used bidirectional sequencing, allele-specific PCR, and bioinformatics to identify the genetic changes in GRM1 and to predict their functional role. A novel missense mutation identified at C1744T (582 Pro > Ser) position of GRM1 gene in a primary AA-PCa cell line (E006AA) was predicted to affect the protein stability and functions. Another novel mutation identified at exon-intron junction of exon-8 in C4-2B cell line resulted in alteration of the GRM1 splicing donor site. In addition, we found missense SNP at T2977C (993 Ser > Pro) position and multiple non-coding mutations and SNPs in 3'-UTR of GRM1 gene in PCa cell lines and tissues. These novel mutations may contribute to the disease by alterations in GRM1 gene splicing, receptor activation, and post-receptor downstream signaling
- âŚ