32,537 research outputs found
Transient response under ultrafast interband excitation of an intrinsic graphene
The transient evolution of carriers in an intrinsic graphene under ultrafast
excitation, which is caused by the collisionless interband transitions, is
studied theoretically. The energy relaxation due to the quasielastic acoustic
phonon scattering and the interband generation-recombination transitions due to
thermal radiation are analyzed. The distributions of carriers are obtained for
the limiting cases when carrier-carrier scattering is negligible and when the
intercarrier scattering imposes the quasiequilibrium distribution. The
transient optical response (differential reflectivity and transmissivity) on a
probe radiation and transient photoconductivity (response on a weak dc field)
appears to be strongly dependent on the relaxation and recombination dynamics
of carriers.Comment: 9 pages, 8 figure
Treatment of multidrug-resistant tuberculosis in a remote, conflict-affected area of the Democratic Republic of Congo.
The Democratic Republic of Congo is a high-burden country for multidrug-resistant tuberculosis. Médecins Sans Frontières has supported the Ministry of Health in the conflict-affected region of Shabunda since 1997. In 2006, three patients were diagnosed with drug-resistant TB (DR-TB) and had no options for further treatment. An innovative model was developed to treat these patients despite the remote setting. Key innovations were the devolving of responsibility for treatment to non-TB clinicians remotely supported by a TB specialist, use of simplified monitoring protocols, and a strong focus on addressing stigma to support adherence. Treatment was successfully completed after a median of 24 months. This pilot programme demonstrates that successful treatment for DR-TB is possible on a small scale in remote settings
Petrogenetic evolution of pegmatites of the Shigar valley, Skardu, Gilgit-Baltistan, Pakistan
Abstract HKT-ISTP 2013
A
Localizing gravitational wave sources with optical telescopes and combining electromagnetic and gravitational wave data
Neutron star binaries, which are among the most promising sources for the
direct detection of gravitational waves (GW) by ground based detectors, are
also potential electromagnetic (EM) emitters. Gravitational waves will provide
a new window to observe these events and hopefully give us glimpses of new
astrophysics. In this paper, we discuss how EM information of these events can
considerably improve GW parameter estimation both in terms of accuracy and
computational power requirement. And then in return how GW sky localization can
help EM astronomers in follow-up studies of sources which did not yield any
prompt emission. We discuss how both EM source information and GW source
localization can be used in a framework of multi-messenger astronomy. We
illustrate how the large error regions in GW sky localizations can be handled
in conducting optical astronomy in the advance detector era. We show some
preliminary results in the context of an array of optical telescopes called
BlackGEM, dedicated for optical follow-up of GW triggers, that is being
constructed in La Silla, Chile and is expected to operate concurrent to the
advanced GW detectors.Comment: 8 pages, 8 figures, Proceeding for Sant Cugat Forum for Astrophysic
- …