280 research outputs found

    Integrated Geophysical Measurements on a Test Site for Detection of Buried Steel Drums

    Get PDF
    Geophysical methods are increasingly used to detect and locate illegal waste disposal and buried toxic steel drums. This study describes the results of a test carried out in clayey-sandy ground where 12 empty steel drums had previously been buried at 4-5 m below ground level. This test was carried out with three geophysical methods for steel-drum detection: a magnetometric survey, electrical resistivity tomography with different arrays, and a multifrequency frequency-domain electromagnetic induction survey. The data show that as partially expected, the magnetometric and electromagnetic induction surveys detected the actual steel drums buried in the subsurface, while the electrical resistivity tomography mainly detected the changes in some of the physical properties of the terrain connected with the digging operations, rather than the actual presence of the steel drums.Comment: 29 pages, 1 photo, 3 figure

    Magnetic anomalies of steel drums: a review of the literature and research results of the INGV

    Get PDF
    The detection and evaluation of the status of disposal sites that contain hazardous waste materials is becoming an increasingly important element in environmental investigations. Close cooperation between the Istituto Nazionale di Geofisica e Vulcanologia (INGV; National Institute of Volcanology and Geophysics) in Rome and the Italian environmental police has resulted in numerous underground investigations of different buried materials. Among the geophysical investigation tools, magnetometry is the most effective, rapid and precise of all of the geophysical methods for localizing buried steel drums. Analysis of magnetic map anomalies can provide a variety of information about buried materials, including extension, distribution and depth, with processing of the acquired magnetic data. This information is also very useful in case of excavations that are aimed at the recovery of hazardous waste. This study determines the most relevant analyses reported in the literature, with modeling of magnetometric methods for environmental applications both theoretically and experimentally. Some studies and research results achieved by the INGV in relation to magnetic anomalies produced by buried steel drums are also reported, as found in field operations and as achieved from test sites

    The IONORT-ISP-WC system: inclusion of an electron collision frequency model for the D-layer

    Get PDF
    The IONORT-ISP system (IONOspheric Ray-Tracing – IRI-SIRMUP-PROFILES) was recently developed and tested by comparing the measured oblique ionograms over the radio link between Rome (41.89ºN, 12.48ºE), Italy, and Chania (35.51ºN, 24.02ºE), Greece, with the IONORT-ISP simulated oblique ionograms (Settimi et al., 2013). The present paper describes an upgrade of the system to include: a) electron-neutral collision have been included by using a collision frequency model that consists of a double exponential profile; b) the ISP three dimensional (3-D) model of electron density profile grid has been extended down to the altitude of the D-layer; c) the resolution in latitude and longitude of the ISP 3-D model of electron density profile grid has been increased from 2°x2° to 1°x1°. Based on these updates, a new software tool called IONORT-ISP-WC (WC means with collisions) was developed, and a database of 33 IONORT-ISP-WC synthesized oblique ionograms calculated for single (1-hop paths) and multiple (3-hop paths) ionospheric reflections. The IONORT-ISP-WC simulated oblique ionograms were compared with the IONORT-IRI-WC synthesized oblique ionograms, generated by applying IONORT in conjunction with the International Reference Ionosphere (IRI) 3-D electron density grid, and the observed oblique ionograms over the aforementioned radio link. The results obtained show that (1) during daytime, for the lower ionospheric layers, the traces of the synthesized ionograms are cut away at low frequencies because of HF absorption; (2) during night-time, for the higher ionospheric layers, the traces of the simulated ionograms at low frequencies are not cut off (very little HF absorption); (3) the IONORT-ISP-WC MUF values are more accurate than the IONORT-IRI-WC MUF values

    The COMPLEIK subroutine of the IONORT-ISP system for calculating the non-deviative absorption: A comparison with the ICEPAC formula

    Get PDF
    The present paper proposes to discuss the ionospheric absorption, assuming a quasi-flat layered ionospheric medium, with small horizontal gradients. A recent complex eikonal model [Settimi et al., 2013b] is applied, useful to calculate the absorption due to the ionospheric D-layer, which can be approximately characterized by a linearized analytical profile of complex refractive index, covering a short range of heights between h1= 50 km and h2= 90 km. Moreover, Settimi et al. [2013c] have already compared the complex eikonal model for the D-layer with the analytical Chapman’s profile of ionospheric electron density; the corresponding absorption coefficient is more accurate than Rawer’s theory [1976] in the range of middle critical frequencies. Finally, in this paper, the simple complex eikonal equations, in quasi-longitudinal (QL) approximation, for calculating the non-deviative absorption coefficient due to the propagation across the D-layer are encoded into a so called COMPLEIK (COMPLex EIKonal) subroutine of the IONORT (IONOspheric Ray-Tracing) program [Azzarone et al., 2012]. The IONORT program, which simulates the three-dimensional (3-D) ray-tracing for high frequencies (HF) waves in the ionosphere, runs on the assimilative ISP (IRI-SIRMUP-P) discrete model over the Mediterranean area [Pezzopane et al., 2011]. As main outcome of the paper, the simple COMPLEIK algorithm is compared to the more elaborate semi-empirical ICEPAC formula [Stewart, undated], which refers to various phenomenological parameters such as the critical frequency of E-layer. COMPLEIK is reliable just like the ICEPAC, with the advantage of being implemented more directly. Indeed, the complex eikonal model depends just on some parameters of the electron density profile, which are numerically calculable, such as the maximum height

    Automatic interpretation of oblique ionograms

    Get PDF
    We present an algorithm for the identification of trace characteristics of oblique ionograms allowing determination of the Maximum Usable Frequency (MUF) for communication between the transmitter and receiver. The algorithm automatically detects and rejects poor quality ionograms. We performed an exploratory test of the algorithm using data from a campaign of oblique soundings between Rome, Italy (41.90 N, 12.48 E) and Chania, Greece (35.51 N, 24.01 E) and also between Kalkarindji, Australia (17.43 S, 130.81 E) and Culgoora, Australia (30.30 S, 149.55 E). The success of these tests demonstrates the applicability of the method to ionograms recorded by different ionosondes in various helio and geophysical conditions

    Testing the IONORT-ISP system: A comparison between synthesized and measured oblique ionograms

    Get PDF
    The three-dimensional (3-D) electron density representation of the ionosphere computed by the assimilative IRI-SIRMUP-P (ISP) model was tested using IONORT (IONOspheric Ray-Tracing), a software application for calculating a 3-D ray-tracing for high frequency (HF) waves in the ionospheric medium. A radio link was established between Rome (41.8°N, 12.5°E) in Italy, and Chania (35.7°N, 24.0°E) in Greece, within the ISP validity area, and for which oblique soundings are conducted. The ionospheric reference stations, from which the autoscaled foF2 and M(3000)F2 data and real-time vertical electron density profiles were assimilated by the ISP model, were Rome (41.8°N, 12.5°E) and Gibilmanna (37.9°N, 14.0°E) in Italy, and Athens (38.0°N, 23.5°E) in Greece. IONORT was used, in conjunction with the ISP and the International Reference Ionosphere (IRI) 3-D electron density grids, to synthesize oblique ionograms. The comparison between synthesized and measured oblique ionograms, both in terms of the ionogram shape and the maximum usable frequency characterizing the radio path, demonstrates both that the ISP model can more accurately represent real conditions in the ionosphere than the IRI, and that the ray-tracing results computed by IONORT are reasonably reliable

    Classical and Quantum Approach of Quasi Normal Modes in Linear Optical Regime: An Application to One Dimensional Photonic Crystals

    Full text link
    The definition of natural modes for confined structures is one of the central problems in physics, as in nuclear physics, astrophysics, etc. The main problem is due to the boundary conditions, when they are such to push out the problem from the class of Sturm-Liouville. This occurs when boundary conditions imply the presence of eigen-values, as for example when a scatterer excited from the outside gives rise to a transmitted and reflected field. An open cavity with an external or internal excitation represents a "non-canonical" problem, in the sense of a Sturm-Liouville's problem, due to the fact that cavity modes couple themselves with external modes. This problem is crucial when one intends to study light-matter interaction effects as absorption, spontaneous emission, stimulated emission, as they occur in micro-cavities.Comment: Ph-D Thesis in Electromagnetism: Settimi et al., Phys. Rev. E 68, 026614 [11 pages] (2003); Severini et al., Acta Phys. Hung. B 23/3-4, 135-142 (2005); Severini et al., Phys. Rev. E, 70, 056614 [12 pages](2004); Severini et al., Laser Physics, 16, 911-920 (2006); Settimi et al., Phys. Rev. E 71, 066606 [10 pages] (2005); Settimi et al., Eur. Phys. J. B. 50, 379-391 (2006

    Indocyanine green (ICG) fluorescent cholangiography during laparoscopic cholecystectomy using RUBINAâ„¢ technology: preliminary experience in two pediatric surgery centers

    Get PDF
    Background: Recently, we reported the feasibility of indocyanine green (ICG) near-infrared fluorescence (NIRF) imaging to identify extrahepatic biliary anatomy during laparoscopic cholecystectomy (LC) in pediatric patients. This paper aimed to describe the use of a new technology, RUBINA™, to perform intra-operative ICG fluorescent cholangiography (FC) in pediatric LC. Methods: During the last year, ICG-FC was performed during LC using the new technology RUBINA™ in two pediatric surgery units. The ICG dosage was 0.35 mg/Kg and the median timing of administration was 15.6 h prior to surgery. Patient baseline, intra-operative details, rate of biliary anatomy identification, utilization ease, and surgical outcomes were assessed. Results: Thirteen patients (11 girls), with median age at surgery of 12.9 years, underwent LC using the new RUBINA™ technology. Six patients (46.1%) had associated comorbidities and five (38.5%) were practicing drug therapy. Pre-operative workup included ultrasound (n = 13) and cholangio-MRI (n = 5), excluding biliary and/or vascular anatomical anomalies. One patient needed conversion to open surgery and was excluded from the study. The median operative time was 96.9 min (range 55–180). Technical failure of intra-operative ICG-NIRF visualization occurred in 2/12 patients (16.7%). In the other cases, ICG-NIRF allowed to identify biliary/vascular anatomic anomalies in 4/12 (33.3%), including Moynihan's hump of the right hepatic artery (n = 1), supravescicular bile duct (n = 1), and short cystic duct (n = 2). No allergic or adverse reactions to ICG, post-operative complications, or reoperations were reported. Conclusion: Our preliminary experience suggested that the new RUBINA™ technology was very effective to perform ICG-FC during LC in pediatric patients. The advantages of this technology include the possibility to overlay the ICG-NIRF data onto the standard white light image and provide surgeons a constant fluorescence imaging of the target anatomy to assess position of critical biliary structures or presence of anatomical anomalies and safely perform the operation

    Towards the design of robotic drivers for full-scale self-driving racing cars

    Get PDF
    Autonomous vehicles are undergoing a rapid development thanks to advances in perception, planning and control methods and technologies achieved in the last two decades. Moreover, the lowering costs of sensors and computing platforms are attracting industrial entities, empowering the integration and development of innovative solutions for civilian use. Still, the development of autonomous racing cars has been confined mainly to laboratory studies and small to middle scale vehicles. This paper tackles the development of a planning and control framework for an electric full scale autonomous racing car, which is an absolute novelty in the literature, upon which we report our preliminary experiments and perspectives on future work. Our system leverages real time Nonlinear Model Predictive Control to track a pre-planned racing line. We describe the whole control system architecture including the mapping and localization methods employed
    • …
    corecore