97 research outputs found

    Scalar Wave Equation Modeling with Time-Space Domain Dispersion-Relation-Based Staggered-Grid Finite-Difference Schemes

    Get PDF
    The staggered-grid finite-difference (SFD) method is widely used in numerical modeling of wave equations. Conventional SFD stencils for spatial derivatives are usually designed in the space domain. However, when they are used to solve wave equations, it becomes difficult to satisfy the dispersion relations exactly. Liu and Sen (2009c) proposed a new SFD scheme for one-dimensional (1D) scalar wave equation based on the time-space domain dispersion relation and plane wave theory, which is made to satisfy the exact dispersion relation. This new SFD scheme has greater accuracy and better stability than a conventional scheme under the same discretizations. In this paper, we develop this new SFD scheme further for numerical solution of 2D and 3D scalar wave equations. We demonstrate that the modeling accuracy is second order when the conventional 2M-th-order space-domain SFD and the second order time-domain finite-difference stencils are directly used to solve the scalar wave equation. However, under the same discretization, our 1D scheme can reach 2M-th-order accuracy and is always stable; 2D and 3D schemes can reach 2M-th-order accuracy along 8 and 48 directions, respectively, and have better stability. The advantages of the new schemes are also demonstrated with dispersion analysis, stability analysis, and numerical modeling.National Natural Science Foundation of China 41074100Important National Science & Technology Specific Project of China 2008ZX05024-001Institute for Geophysic

    Basis Pursuit Receiver Function

    Get PDF
    Receiver functions (RFs) are derived by deconvolution of the horizontal (radial or transverse) component of ground motion from the vertical component, which segregates the PS phases. Many methods have been proposed to employ deconvolution in frequency as well as in time domain. These methods vary in their approaches to impose regularization that addresses the stability problem. Here, we present application of a new time-domain deconvolution technique called basis pursuit deconvolution (BPD) that has recently been applied to seismic exploration data. Unlike conventional deconvolution methods, the BPD uses an L1 norm constraint on model reflectivity to impose sparsity. In addition, it uses an overcomplete wedge dictionary based on a dipole reflectivity series to define model constraints, which can achieve higher resolution than that obtained by the traditional methods. We demonstrate successful application of BPD based RF estimation from synthetic data for a crustal model with a near-surface thin layer of thickness 5, 7, 10, and 15 km. The BPD can resolve these thin layers better with much improved signal-to-noise ratio than the conventional methods. Finally, we demonstrate application of the BPD receiver function (BPRF) method to a field dataset from Kutch, India, where near-surface sedimentary layers are known to be present. The BPRFs are able to resolve reflections from these layers very well.Jackson Chair funds at the Jackson School of Geosciences, University of Texas, AustinCouncil of Scientific and Industrial Research twelfth five year plan project at the Council of Scientific and Industrial Research National Geophysical Research Institute (CSIR-NGRI), HyderabadInstitute for Geophysic

    The structure of the earth's mantle from body wave observations.

    Get PDF
    Thesis. 1975. Sc.D.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences.Vita.Bibliography: leaves 358-387.Sc.D
    corecore