14 research outputs found

    ДЕСТРУКЦИЯ ЛИТОСФЕРЫ: РАЗЛОМНО­БЛОКОВАЯ ДЕЛИМОСТЬ И ЕЕ ТЕКТОНОФИЗИЧЕСКИЕ ЗАКОНОМЕРНОСТИ

    Get PDF
    A new concept is proposed concerning the origin and inception of ‘initial’ faults and formation of large blocks as a result of cooling of the Archaean lithosphere, during which Benard cells had formed (Fig. 5). At locations where cooling convection currents went down, partial crystallization took place, stresses were localized, and initial fault occurred there. The systems of such fault developed mainly in two directions and gradually formed an initial block pattern of the lithosphere. This pattern is now represented by the largest Archaean faults acting as boundaries of the lithospheric plates and large intraplate blocks (Fig. 6). This group of faults represents the first scaletime level of destruction of the lithosphere. Large blocks of the first (and may be the second) order, which are located on the viscous foundation, interacted with each other under the influence of the sublithospheric movements or endogenous sources and thus facilitated the occurrence of high stresses inside the blocks. When the limits of strength characteristics of the block medium were exceeded, the intrablock stresses were released and caused formation of fractures/faults and blocks of various ranks (Fig. 14). This large group, including faultblock structures of various ranks and ages, comprises the second level of the scaletime destruction of the lithosphere.The intense evolution of ensembles of faults and blocks of the second scaletime level is facilitated by shortterm activation of faultblock structures of the lithosphere under the influence of strain waves. Periods of intensive shortterm activation are reliably detected by seismic monitoring over the past fifty years. Investigations of periodical processes specified in the geological records over the post-Proterozoic periods [Khain, Khalilov, 2009] suggest that in so far uninvestigated historical and more ancient times, the top of the lithosphere was subject to wave processes that  influenced the metastable state of the faultblock medium of the lithosphere.At the second scale-time level, the lithosphere is destructed in accordance with the laws of destruction of elastic and brittle bodies; at all hierarchical levels, the lithospheric destruction complies with the similarity patterns; the lithospheric destruction processes are characterized by fractality and take place synchronously with other destruction processes.Equations of the fault (7) and block divisibility (8) of the lithosphere and the generalized equation (9) of the faultblock divisibility of lithosphere are proposed.By the present stage of the geodynamic evolution of the Earth, the horizontally-layered zonal pattern of destruction of the Earth has been established (Fig. 15). The next step would be obtaining the knowledge of the law that governs the evolution of the lithospheric destruction as a whole. The subjects for discussions hold be variations of the rheological properties of the vertical profile of the lithosphere, impacts of the time factor on the rheological and mechanical properties, and, lastly, the initial heterogeneity of the lithospheric medium in combination with modern geodynamic processes. This problem is solvable, and its importance for practical applications is undubitable.Предложен новый взгляд на происхождение и заложение «первичных» разломов и образование крупных блоков как результат остывания архейской литосферы, во время которого формировались ячеи Бенара (рис. 5). В местах погружения остывающих конвекционных потоков происходила частичная кристаллизация, локализация напряжений и закладывались первичные разломы. Их системы, преимущественно двух направлений, постепенно сформировали первичную блоковую структуру литосферы, которая к настоящему времени представлена самыми крупными разломами архейского заложения, выступающими как ограничения плит и крупных внутриплитных блоков (рис. 6). Эта группа разломов формирует первый масштабно-временной уровень деструкции литосферы. Крупные блоки первого, возможно второго порядков, располагаясь на вязком основании, взаимодействуя друг с другом под влиянием подлитосферных движений или эндогенных источников, способствовали возникновению высоких внутриблоковых напряжений. При превышении пределов прочностных характеристик блоковой среды разрядка внутриблоковых напряжений приводила к формированию разрывов и блоков различных рангов (рис. 14). Эта разноранговая и разновременная по образованию большая группа разломноблоковых структур формирует второй масштабно-временной уровень деструкции литосферы. Интенсивному эволюционному развитию ансамблей разломов и блоков второго масштабно-временного уровня способствуют короткопериодные активизации разломноблоковых структур литосферы, происходящие под воздействием деформационных волн. Интенсивные короткопериодные активизации аргументированно устанавливаются по сейсмическому мониторингу для последних пятидесяти лет. Исследования по периодическим процессам, зафиксированным в геологических летописях за постпротерозойские периоды [Khain, Khalilov, 2009], позволяют считать, что и в пока не изученные исторические и более древние времена для верхней части литосферы были характерны волновые процессы и их воздействие на метастабильное состояние разломноблоковой среды литосферы.Деструкция литосферы на втором масштабно-временном уровне происходит в соответствии с законами разрушения упругих и хрупких тел, на всех иерархических уровнях соответствует подобию разрушения, фрактальности процессов деструкции, а также синхронным деструкции  другим процессам. Предложены уравнения разломной (7) и блоковой делимости (8) литосферы, а также обобщенное уравнение (9) разломноблоковой делимости литосферы. К современному геодинамическому этапу развития Земли сформирована  горизонтально-слоистая зональная структура деструкции Земли (рис. 15). На очереди – познание закона эволюции деструкции литосферы Земли в целом. Необходимо ввести в обсуждение вариации реологических свойств вертикального разреза литосферы, влияние фактора времени на реологические и прочностные свойства, наконец, первичную неоднородность среды литосферы в сочетании с современными геодинамическими процессами. Проблема решаемая, ее практическая значимость несомненна.

    СЕЙСМИЧЕСКИЕ ПОЯСА И ЗОНЫ ЗЕМЛИ: ФОРМАЛИЗАЦИЯ ПОНЯТИЙ,  ПОЛОЖЕНИЕ В ЛИТОСФЕРЕ И СТРУКТУРНЫЙ КОНТРОЛЬ

    Get PDF
    This publication is aimed at formalization of the notions of «seismic zone» and «seismic belt». A seismic zone (SZ) is a territory defined and contoured in a technically active area. Within the limits of this territory, more than 10 seismic event with М>3 (К>9) occurred in the specified period of time (typically, 50 years), or the number of seismic event is not below a certain statistically relevant value. The external contour of SZ should be drawn according to the isolines of the corresponding density of registered earthquakes with М≥3, pending no less than three events within the given square area. In each case, selection of contours of SZ should be determined so that it can provide for classification of SZs. SZ should correspond to one or several tectonic structures. The interior structure of SZ can be zoned according to densities of earthquake epicentres.A seismic belt (SB) is a structure with a uniform geodynamic regime, wherein seismic zones are closely spaced. Typically, such structures are margins of plates or large intra­plate blocks. In real time, SB is generally characterized by a permanent state of lithospheric stresses. Stress vectors in local segments of SB may differ from the dominant type of stresses. They can be variable due to changes in strike of local and regional faults which control seismicity and also due to various directions of zones of the recent lithospheric destruction.The Earth’s SBs and SZs are mapped. SBs and a number of most important SZs are briefly described. Main parameters of SBs and SZs are tabulated. Based on the available data on SBs and SZs and taking into account the common geodynamical settings and elongated localities of earthquake foci, we suggest that it is required to evaluate structural factors controlling the seismic process and its components (locations of earthquake foci) at all the hierarchic levels, i.e. seismic belts, seismic zones, fault zones wherein stresses are concentrated, and structures wherein earthquake foci are located. Due to differences in the structural factors of control and scaling of SB and SZ manifestation, criteria for occurrence of earthquakes of various magnitudes are significantly different. Rare catastrophic earthquakes in SB result from the evolution of inter­plate and large inter­block margins in the geochronological scale intervals and/or disturbances of the evolution regularities due to catastrophic seismic event in the adjacent SB. Developing tectonophysical models of SBs is a future challenge.In SZ, earthquakes of medium magnitudes and rare strong seismic events results from the impact of strain waves on the mega­stable state of the recent lithospheric destruction zones which comprise the SZ structure. Time spans between seismic events in SZ are estimated in real time scales (decades, years, months) and thus can be considered instant in relation to periods of the geological evolution of inter­plate margins and other large structural margins (hundred thousand years, million years). In terms of the given time evaluation, the mega­stable state of the recent lithospheric destruction zones in SZ can be disturbed by factors of external impact in real time intervals, rather than by ‘the geological evolution’ factors.In this publication, the Baikal SZ is selected for analyses and testing as one of the best studied zones. In future studies, similar tests can be done for other seismic zones. Spatial and temporal regularities of earthquake locations in the areas of dynamic influence of faults in SZ and results of studies to provide for tectonophysical modeling of SZ can be applicable for expanding possibilities of mid­term seismic forecasting. The research data in the present publication confirm strong arguments in favor of transition to quantitative classification of SZs, identification of faults which are active in real time and function as concentrators of earthquake foci, and evaluation of parameters of fault zones which determine space­and­time locations of earthquake foci.This publication demonstrates the need to develop tectonophysical models of SPs and apply such models to gain a more comprehensive understanding of interactions/correlations between seismic zones in cases of catastrophic earthquakes and/or closely spaced SBs with similar states of stresses.Формализованы понятия «сейсмический пояс» (СП) и «сейсмическая зона» (СЗ). СЗ – территория в тектонически активной области, ограниченная контуром, внутри которого за заданный интервал времени (как правило, пятьдесят лет) количество сейсмических событий с М>3 (К>9) выше первого десятка (или не ниже определенной статистически значимой величины). Внешний контур СЗ должен проводиться по изолинии, соответствующей плотности ощутимых землетрясений с М≥3 не менее трех событий на заданную площадь. Выбор границы проведения контура оговаривается в каждом конкретном случае и в дальнейшем формализует систематизацию СЗ. Они должны корреспондировать с одной или несколькими определенными тектоническими структурами и характеризоваться зональностью внутреннего строения по распределению плотности очагов землетрясений.СП – целостная по геодинамическому режиму развития структурная область сближенного в пространстве расположения сейсмических зон. Ею, как правило, являются границы плит или крупных внутриплитных блоков. В целом по этому критерию СП характеризуется постоянным в реальном времени типом напряженного состояния литосферы. В локальных участках СП напряженное состояние может характеризоваться векторами других сочетаний, отличающихся от превалирующего типа напряженного состояния. Эти вариации вызываются изменениями в простирании локальных и региональных сейсмоконтролирующих разрывов, а также зон современной деструкции литосферы.Составлена карта СП и СЗ Земли, даны краткие описания СП и наиболее важных СЗ. Основные характеристики СП и СЗ систематизированы в табличных формах. Изложенные фактические материалы по СП и СЗ, их общая геодинамическая обстановка, линейно вытянутая локализация очагов землетрясений и другие данные свидетельствуют о необходимости оценивать структурные факторы контроля сейсмического процесса и его составляющей – локализации очагов землетрясений – на всех иерархических уровнях: от сейсмических поясов к сейсмическим зонам и от них к разломным зонам как концентраторам напряжений и структурам, локализующим очаги землетрясений. Из-за различия структурных факторов контроля и масштабности проявления СП и СЗ возникают существенные отличия в критериях возникновения землетрясений разной силы. Редкие катастрофические землетрясения в СП являются результатом эволюционного развития межплитных и крупных межблоковых границ в интервалах геохронологической шкалы времени и/или нарушения закономерностей эволюционного процесса из-за катастрофических землетрясений в близлежащем СП. Исследователям еще предстоит разработка тектонофизических моделей СП. В СЗ землетрясения средней силы и редкие сильные события являются результатом воздействия деформационных волн на метастабильное состояние зоны современной деструкции литосферы как структурной основы СЗ. Время между событиями в СЗ исчисляется в шкалах реального времени (десятки лет, годы, месяцы), которое по отношению к временным периодам геологической эволюции межплитных и других крупных структурных границ (сотни тысяч и миллионы лет) может рассматриваться как мгновенное. В подобном исчислении времени метастабильное состояние зон современной деструкции литосферы в СЗ может нарушаться не столько «эволюционным геологическим процессом», сколько факторами внешнего воздействия в интервалах реального времени. Подобный процесс в качестве примера и возможного аналогичного тестирования в других СЗ рассмотрен при анализе хорошо изученной Байкальской СЗ.Пространственные и временные закономерности локализации землетрясений в областях динамического влияния разломов в СЗ и исследования по созданию их тектонофизических моделей открывают возможности среднесрочного прогноза землетрясений. Приведенный материал является серьезной аргументацией для перехода на количественную по своей базовой основе классификацию СЗ, выделение в них активных в реальное время разломов – концентраторов очагов землетрясений и оценку в их зонах  параметров, определяющих  пространственно-временную локализацию очагов. Изложенное можно рассматривать как назревшую необходимость разработки тектонофизических моделей СП и на их основе более глубокого понимания взаимодействий сейсмических зон при возникновении катастрофических землетрясений или/и близко расположенных идентичных по напряженному состоянию СП

    ТЕКТОНОФИЗИЧЕСКИЕ ИССЛЕДОВАНИЯ В ИНСТИТУТЕ ЗЕМНОЙ КОРЫ СО РАН: ПРИНЦИПИАЛЬНЫЕ ДОСТИЖЕНИЯ И АКТУАЛЬНЫЕ ЗАДАЧИ

    Get PDF
    The article presents major results which have been obtained during 30 years of researches conducted by the Laboratory of Tectonophysics at the Institute of the Earth’s Crust.General regularities in organization of fault-block structures in the brittle lithosphere are established. Relations between main parameters of faults are investigated, and their connection with the lithospheric structure and recent crustal movements is shown. A rheological model of vertical zoning of faults is proposed. Internal structures of faults are studied; stages in faulting are generally defined in terms of time; regularities of patterns of joints inside faults are described; and original methods of mapping such joints are proposed to reveal tectonic conditions of faulting.Based on seismic monitoring, new methods of quantitative assessment of relative activity rates of faults in real time are developed. Such methods are applied to delineate zones of recent destruction of the lithosphere in the Central Asian region. The state of stresses of the lithosphere is mapped, and the new map allows us to reveal regularities in the spatial mosaic of regions differing by types of stress fields.Our physical experiments conducted in compliance with similarity conditions are aimed at studying faulting mechanisms with regard to variable loads. A special set of experiments is devoted to the Baikal rift system. Cases of application of tectonophysical methods to study fault tectonics, the state of stresses and seismicity of the lithosphere are described. Prospects of tectonophysical researches conducted in the Laboratory and potentials of integration with studies of other research teams are considered.Изложены основные результаты исследований сотрудников лаборатории тектонофизики Института земной коры СО РАН за тридцатилетний период. Установлены общие закономерности организации разломно-блоковых структур хрупкой литосферы. Изучены соотношения основных параметров разломов, показана их связь со структурой литосферы, современными движениями земной коры. Предложена реологическая модель вертикальной зональности разломов. Детально исследована внутренняя структура разломов, установлены общие временные этапы ее становления, показаны закономерности организации внутриразломной трещиноватости и методы ее картирования для определения тектонических условий формирования разломов. Предложены методы количественной оценки относительной активности разломов в реальном времени на основе сейсмического мониторинга. На базе их применения выделены зоны современной деструкции литосферы в пределах Центрально-Азиатского региона. Составлена карта напряженного состояния литосферы, и намечены закономерности пространственного расположения на земном шаре регионов с различными типами полей напряжений. Проведены физические эксперименты с соблюдением условий подобия для выяснения механизма формирования разломов при разных условиях нагружения, а также комплекс экспериментов для выяснения механизма формирования Байкальской рифтовой системы в целом. Приведены примеры практического применения комплекса тектонофизических методов при изучении разломной тектоники, напряженного состояния литосферы и её сейсмичности. Рассмотрены перспективы дальнейших тектонофизических исследований

    ТЕКТОНОФИЗИЧЕСКИЕ СОВЕЩАНИЯ В СССР И РОССИИ: ИНФОРМАЦИЯ НАКАНУНЕ ТРЕТЬЕЙ ТЕКТОНОФИЗИЧЕСКОЙ КОНФЕРЕНЦИИ В ИФЗ РАН “ТЕКТОНОФИЗИКА И АКТУАЛЬНЫЕ ВОПРОСЫ НАУК О ЗЕМЛЕ” (МОСКВА, 8–12 ОКТЯБРЯ 2012 Г.)

    Get PDF
    The article provides a brief review of the history of tectonophysical meetings in the former Soviet Union and Russia. This information is published on the eve of the Third Tectonophysical Conference convened by the Institute of Physics of the Earth in October 2012.В статье представлен краткий обзор истории проведения тектонофизических совещаний в бывшем СССР и России. Эта информация публикуется в преддверии Третьей тектонофизической конференции, организуемой в Институте физики Земли РАН в октябре 2012 г

    АКАДЕМИК Н.А. ЛОГАЧЕВ И ЕГО НАУЧНАЯ ШКОЛА: ВКЛАД В ИЗУЧЕНИЕ КАЙНОЗОЙСКОГО КОНТИНЕНТАЛЬНОГО РИФТОГЕНЕЗА

    Get PDF
    N.A. Florensov and N.A. Logatchev pioneered development of fundamental concepts of the structure and evolution of the Baikal system of rift basins. At the turn to the 21st century, in view of the wide availability of scientific research data on the Cenozoic continental rift zones located in Eurasia, Africa and North America, and taking into account the application of new research methods and options to process and analyze huge amounts of geological and geophysical data, a priority was comprehensive modeling of rifting from its origin to the current period of time. This scientific challenge was addressed by the research team under the leadership of N.A. Logachev.Фундаментальные представления о строении и развитии Байкальской системы рифтовых впадин были заложены в трудах Н.А. Флоренсова и Н.А. Логачева. Высокая степень изученности кайнозойских континентальных рифтовых зон Евразии, Африки и Северной Америки, а также новые методики и возможности обработки и анализа больших массивов геологической и геофизической информации выдвинули на рубеже XX и XXI столетий в качестве приоритетной задачи создание комплексной модели развития рифтогенеза с его зарождения до современности. Решение поставленной задачи осуществлялось в рамках работ научной школы под руководством Н.А. Логачева

    DESTRUCTION OF THE LITHOSPHERE: FAULTBLOCK DIVISIBILITY AND ITS TECTONOPHYSICAL REGULARITIES

    No full text
    A new concept is proposed concerning the origin and inception of ‘initial’ faults and formation of large blocks as a result of cooling of the Archaean lithosphere, during which Benard cells had formed (Fig. 5). At locations where cooling convection currents went down, partial crystallization took place, stresses were localized, and initial fault occurred there. The systems of such fault developed mainly in two directions and gradually formed an initial block pattern of the lithosphere. This pattern is now represented by the largest Archaean faults acting as boundaries of the lithospheric plates and large intraplate blocks (Fig. 6). This group of faults represents the first scaletime level of destruction of the lithosphere. Large blocks of the first (and may be the second) order, which are located on the viscous foundation, interacted with each other under the influence of the sublithospheric movements or endogenous sources and thus facilitated the occurrence of high stresses inside the blocks. When the limits of strength characteristics of the block medium were exceeded, the intrablock stresses were released and caused formation of fractures/faults and blocks of various ranks (Fig. 14). This large group, including faultblock structures of various ranks and ages, comprises the second level of the scaletime destruction of the lithosphere.The intense evolution of ensembles of faults and blocks of the second scaletime level is facilitated by shortterm activation of faultblock structures of the lithosphere under the influence of strain waves. Periods of intensive shortterm activation are reliably detected by seismic monitoring over the past fifty years. Investigations of periodical processes specified in the geological records over the post-Proterozoic periods [Khain, Khalilov, 2009] suggest that in so far uninvestigated historical and more ancient times, the top of the lithosphere was subject to wave processes that  influenced the metastable state of the faultblock medium of the lithosphere.At the second scale-time level, the lithosphere is destructed in accordance with the laws of destruction of elastic and brittle bodies; at all hierarchical levels, the lithospheric destruction complies with the similarity patterns; the lithospheric destruction processes are characterized by fractality and take place synchronously with other destruction processes.Equations of the fault (7) and block divisibility (8) of the lithosphere and the generalized equation (9) of the faultblock divisibility of lithosphere are proposed.By the present stage of the geodynamic evolution of the Earth, the horizontally-layered zonal pattern of destruction of the Earth has been established (Fig. 15). The next step would be obtaining the knowledge of the law that governs the evolution of the lithospheric destruction as a whole. The subjects for discussions hold be variations of the rheological properties of the vertical profile of the lithosphere, impacts of the time factor on the rheological and mechanical properties, and, lastly, the initial heterogeneity of the lithospheric medium in combination with modern geodynamic processes. This problem is solvable, and its importance for practical applications is undubitable

    GENETIC SOURCES AND TECTONOPHYSICAL REGULARITIES OF DIVISIBILITY OF THE LITHOSPHERE INTO BLOCKS OF VARIOUS RANKS AT DIFFERENT STAGES OF ITS FORMATION: TECTONOPHYSICAL ANALYSIS

    No full text
    The paper presents the first tectonophysical reconstruction of initial divisibility of the protolithosphere as a result of convection in the cooling primitive mantle. Initial division of the protolithosphere into separate masses, i.e. prototypes of the blocks, and their size are predetermined by the emerging Rayleigh-Benard convection cells. In studies of geology and geodynamics, the Rayleigh-Benard convection cells were first referred to as a factor to explain the formation of initial continental cores. Considering the Rayleigh-Benard cells and their structural relics can help clarify initial divisibility of the protolithosphere and the origin of the major lithospheric plates, i.e. prototypes of continents. In our opinion, the initial mega-scale block structure of the protolithosphere and the emerging lithosphere were predetermined by the Rayleigh-Benard cells as they were preserved in the emerging lithosphere and their lower boundaries corresponded to the core-mantle boundary, i.e. one of the major discontinuities of the planet. Our theoretical estimations are in good agreement with the number and sizes of the Earth's theorized first supercontinents, Vaalbara and Ur. In our tectonophysical discussion of the formation of the lithospheric block structure, we analyze in detail the map of modern lithospheric plates [Bird, 2003] in combination with the materials from [Sherman et al., 2000]. In the hierarchy of the blocks comprising the contemporary lithosphere, which sizes are widely variable, two groups of blocks are clearly distinguished. The first group includes megablocks with the average geometric size above 6500 km. Their formation is related to convection in the Earth mantle at the present stage of the geodynamic evolution of the Earth, as well as at all the previous stages, including the earliest one, when the protolithosphere emerged. The second group includes medium-sized blocks with the average geometric size of less than 4500 km and those with minimum sizes, such as rock lumps. They reflect primarily the degradation of megablocks as a result of their destruction due to high stresses in excess of the tensile strength of the medium. This group may also include blocks which formation is related to convection in the upper mantle layer, asthenosphere. There are grounds to assume that through the vast intermediate interval of geologic time, including supercycles of Kenorlend, Rodin, and and partically Pangea, the formation of the large lithospheric blocks was controlled by convection, and later on, they were 'fragmented' under the physical laws of destruction of solid bodies. However, it is difficult to clearly distinguish between the processes that predetermine the hierarchy of formation of the block structures of various origins – sizes of ancient lithospheric blocks cannot be estimated unambiguously.Thus, mantle convection is a genetic endogenous source of initial divisibility of the cooling upper cover of the Earth and megablock divisibility of the lithosphere in the subsequent and recent geodynamic development stages. At the present stage, regular patterns of the lithospheric block divisibility of various scales are observed at all the hierarchic levels. The areas of the lithospheric megaplates result from regular changes of convective processes in the mantle, which influenced the formation of plates and plate kinematics. Fragmentation of the megaplates into smaller ones is a result of destruction of the solid lithosphere under the physical laws of destruction of solid bodies under the impact of high stresses

    ГЕНЕТИЧЕСКИЕ ИСТОЧНИКИ И ТЕКТОНОФИЗИЧЕСКИЕ ЗАКОНОМЕРНОСТИ РАЗНОРАНГОВОЙ БЛОКОВОЙ ДЕЛИМОСТИ ЛИТОСФЕРЫ НА РАЗЛИЧНЫХ ЭТАПАХ ЕЕ ФОРМИРОВАНИЯ: ТЕКТОНОФИЗИЧЕСКИЙ АНАЛИЗ

    Get PDF
    The paper presents the first tectonophysical reconstruction of initial divisibility of the protolithosphere as a result of convection in the cooling primitive mantle. Initial division of the protolithosphere into separate masses, i.e. prototypes of the blocks, and their size are predetermined by the emerging Rayleigh-Benard convection cells. In studies of geology and geodynamics, the Rayleigh-Benard convection cells were first referred to as a factor to explain the formation of initial continental cores. Considering the Rayleigh-Benard cells and their structural relics can help clarify initial divisibility of the protolithosphere and the origin of the major lithospheric plates, i.e. prototypes of continents. In our opinion, the initial mega-scale block structure of the protolithosphere and the emerging lithosphere were predetermined by the Rayleigh-Benard cells as they were preserved in the emerging lithosphere and their lower boundaries corresponded to the core-mantle boundary, i.e. one of the major discontinuities of the planet. Our theoretical estimations are in good agreement with the number and sizes of the Earth's theorized first supercontinents, Vaalbara and Ur. In our tectonophysical discussion of the formation of the lithospheric block structure, we analyze in detail the map of modern lithospheric plates [Bird, 2003] in combination with the materials from [Sherman et al., 2000]. In the hierarchy of the blocks comprising the contemporary lithosphere, which sizes are widely variable, two groups of blocks are clearly distinguished. The first group includes megablocks with the average geometric size above 6500 km. Their formation is related to convection in the Earth mantle at the present stage of the geodynamic evolution of the Earth, as well as at all the previous stages, including the earliest one, when the protolithosphere emerged. The second group includes medium-sized blocks with the average geometric size of less than 4500 km and those with minimum sizes, such as rock lumps. They reflect primarily the degradation of megablocks as a result of their destruction due to high stresses in excess of the tensile strength of the medium. This group may also include blocks which formation is related to convection in the upper mantle layer, asthenosphere. There are grounds to assume that through the vast intermediate interval of geologic time, including supercycles of Kenorlend, Rodin, and and partically Pangea, the formation of the large lithospheric blocks was controlled by convection, and later on, they were 'fragmented' under the physical laws of destruction of solid bodies. However, it is difficult to clearly distinguish between the processes that predetermine the hierarchy of formation of the block structures of various origins – sizes of ancient lithospheric blocks cannot be estimated unambiguously.Thus, mantle convection is a genetic endogenous source of initial divisibility of the cooling upper cover of the Earth and megablock divisibility of the lithosphere in the subsequent and recent geodynamic development stages. At the present stage, regular patterns of the lithospheric block divisibility of various scales are observed at all the hierarchic levels. The areas of the lithospheric megaplates result from regular changes of convective processes in the mantle, which influenced the formation of plates and plate kinematics. Fragmentation of the megaplates into smaller ones is a result of destruction of the solid lithosphere under the physical laws of destruction of solid bodies under the impact of high stresses.Впервые проводится тектонофизическая реконструкция формирования первичной делимости протолитосферы в результате конвекции остывающей примитивной мантии. Формирующиеся в ней конвективные ячеи Рэлея-Бенара предопределяют размеры первичного разделения протолитосферы на отдельные массы – прообразы блоков. Ячеи Рэлея-Бенара не впервые используются в геологии и геодинамике. Первоначально на них ссылались для объяснения формирования первичных континентальных ядер. Обращение к ячеям Рэлея-Бенара и их структурным реликтам способствует пониманию того, как зарождается первичная делимость протолитосферы, которая трансформируется в крупные литосферные плиты – прообразы континентов. Именно консервирующиеся в формирующейся литосфере ячеи Рэлея-Бенара, нижняя граница которых корреспондировала с одним из главных разделов планеты – границей ядра, – предопределили первоначальную мегамасштабную блоковую структуру протолитосферы и формирующейся литосферы. Проведенные теоретические оценки сопоставлены и хорошо согласуются с количеством и размерами площадей первых гипотетических континентальных структур – суперконтинентов Ваальбара и Ура.Продолжение тектонофизического разбора формирования блоковой структуры литосферы реализовано на детальном анализе карты современных литосферных плит [Bird, 2003] с привлечением фактических материалов [Shermanetal., 2000]. В широкой по размерам площадей иерархии блоков в современной литосфере Земли отчетливо выделяются две группы. Первая – мегаблоки, среднегеометрический размер которых превышает 6500 км. Их формирование на современном этапе геодинамического развития Земли, а также на всех предшествующих, в том числе и на самом раннем, при зарождении протолитосферы связано с конвекционными процессами в мантии Земли. Вторая группа – блоки со среднегеометрическим размером менее 4500 км, вплоть до минимального, соответствующего кусковатости горных пород, отражают, прежде всего, деструкцию мегаблоков в результате их разрушения под действием высоких внутренних напряжений, превышающих предел прочности среды. В этой же группе могут быть блоки, формирование которых также связано с конвекцией, охватывающей верхний мантийный уровень – астеносферу. Можно предполагать, что в громадном промежуточном интервале геологического времени, охватывающем суперциклы Кенорленд, Родинию и, частично, Пангею, формирование крупных литосферных блоков контролировалось конвекцией, а их дальнейшее «дробление» регулировалось физическими законами разрушения твердых тел. Однако четкую границу между процессами, определяющими иерархию формирования блоковых структур разного генезиса в прошедшие времена, провести трудно из-за неопределенности размеров литосферных блоков далекого прошлого.Таким образом, конвекция в мантии является генетическим эндогенным источником первичной делимости остывающей верхней оболочки Земли, а также мегаблоковой делимости собственно литосферы в последующие этапы ее геодинамического развития. На современном этапе закономерности разномасштабной блоковой делимости литосферы прослеживаются на всех иерархических уровнях. Площади мегаплит литосферы – результат закономерных изменений конвективных процессов в мантии и их воздействия на формирование и кинематику плит; деструкция мегаплит на меньшие по площади блоки – результат закономерного дробления твердых тел литосферы при высоких напряжениях

    SEISMIC BELTS AND ZONES OF THE EARTH: FORMALIZATION OF NOTIONS, POSITIONS IN THE LITHOSPHERE, AND STRUCTURAL CONTROL

    No full text
    This publication is aimed at formalization of the notions of «seismic zone» and «seismic belt». A seismic zone (SZ) is a territory defined and contoured in a technically active area. Within the limits of this territory, more than 10 seismic event with М>3 (К>9) occurred in the specified period of time (typically, 50 years), or the number of seismic event is not below a certain statistically relevant value. The external contour of SZ should be drawn according to the isolines of the corresponding density of registered earthquakes with М≥3, pending no less than three events within the given square area. In each case, selection of contours of SZ should be determined so that it can provide for classification of SZs. SZ should correspond to one or several tectonic structures. The interior structure of SZ can be zoned according to densities of earthquake epicentres.A seismic belt (SB) is a structure with a uniform geodynamic regime, wherein seismic zones are closely spaced. Typically, such structures are margins of plates or large intra­plate blocks. In real time, SB is generally characterized by a permanent state of lithospheric stresses. Stress vectors in local segments of SB may differ from the dominant type of stresses. They can be variable due to changes in strike of local and regional faults which control seismicity and also due to various directions of zones of the recent lithospheric destruction.The Earth’s SBs and SZs are mapped. SBs and a number of most important SZs are briefly described. Main parameters of SBs and SZs are tabulated. Based on the available data on SBs and SZs and taking into account the common geodynamical settings and elongated localities of earthquake foci, we suggest that it is required to evaluate structural factors controlling the seismic process and its components (locations of earthquake foci) at all the hierarchic levels, i.e. seismic belts, seismic zones, fault zones wherein stresses are concentrated, and structures wherein earthquake foci are located. Due to differences in the structural factors of control and scaling of SB and SZ manifestation, criteria for occurrence of earthquakes of various magnitudes are significantly different. Rare catastrophic earthquakes in SB result from the evolution of inter­plate and large inter­block margins in the geochronological scale intervals and/or disturbances of the evolution regularities due to catastrophic seismic event in the adjacent SB. Developing tectonophysical models of SBs is a future challenge.In SZ, earthquakes of medium magnitudes and rare strong seismic events results from the impact of strain waves on the mega­stable state of the recent lithospheric destruction zones which comprise the SZ structure. Time spans between seismic events in SZ are estimated in real time scales (decades, years, months) and thus can be considered instant in relation to periods of the geological evolution of inter­plate margins and other large structural margins (hundred thousand years, million years). In terms of the given time evaluation, the mega­stable state of the recent lithospheric destruction zones in SZ can be disturbed by factors of external impact in real time intervals, rather than by ‘the geological evolution’ factors.In this publication, the Baikal SZ is selected for analyses and testing as one of the best studied zones. In future studies, similar tests can be done for other seismic zones. Spatial and temporal regularities of earthquake locations in the areas of dynamic influence of faults in SZ and results of studies to provide for tectonophysical modeling of SZ can be applicable for expanding possibilities of mid­term seismic forecasting. The research data in the present publication confirm strong arguments in favor of transition to quantitative classification of SZs, identification of faults which are active in real time and function as concentrators of earthquake foci, and evaluation of parameters of fault zones which determine space­and­time locations of earthquake foci.This publication demonstrates the need to develop tectonophysical models of SPs and apply such models to gain a more comprehensive understanding of interactions/correlations between seismic zones in cases of catastrophic earthquakes and/or closely spaced SBs with similar states of stresses

    TECTONOPHYSICAL RESEARCH AT INSTITUTE OF THE EARTH’S CRUST SB RAS: MAJOR ACHIEVEMENTS AND ACTUAL PROBLEMS

    No full text
    The article presents major results which have been obtained during 30 years of researches conducted by the Laboratory of Tectonophysics at the Institute of the Earth’s Crust.General regularities in organization of fault-block structures in the brittle lithosphere are established. Relations between main parameters of faults are investigated, and their connection with the lithospheric structure and recent crustal movements is shown. A rheological model of vertical zoning of faults is proposed. Internal structures of faults are studied; stages in faulting are generally defined in terms of time; regularities of patterns of joints inside faults are described; and original methods of mapping such joints are proposed to reveal tectonic conditions of faulting.Based on seismic monitoring, new methods of quantitative assessment of relative activity rates of faults in real time are developed. Such methods are applied to delineate zones of recent destruction of the lithosphere in the Central Asian region. The state of stresses of the lithosphere is mapped, and the new map allows us to reveal regularities in the spatial mosaic of regions differing by types of stress fields.Our physical experiments conducted in compliance with similarity conditions are aimed at studying faulting mechanisms with regard to variable loads. A special set of experiments is devoted to the Baikal rift system. Cases of application of tectonophysical methods to study fault tectonics, the state of stresses and seismicity of the lithosphere are described. Prospects of tectonophysical researches conducted in the Laboratory and potentials of integration with studies of other research teams are considered
    corecore