1,210 research outputs found
Long-range and selective coupler for superconducting flux qubits
We propose a qubit-qubit coupling scheme for superconducting flux quantum
bits (qubits), where a quantized Josephson junction resonator and microwave
irradiation are utilized. The junction is used as a tunable inductance
controlled by changing the bias current flowing through the junction, and thus
the circuit works as a tunable resonator. This enables us to make any qubits
interact with the resonator. Entanglement between two of many qubits whose
level splittings satisfy some conditions, is formed by microwave irradiation
causing a two-photon Rabi oscillation. Since the size of the resonator can be
as large as sub-millimeters and qubits interact with it via mutual inductance,
our scheme makes it possible to construct a quantum gate involving remote
qubitsComment: 8 pages, 4 figure
Cooling of a Micro-mechanical Resonator by the Back-action of Lorentz Force
Using a semi-classical approach, we describe an on-chip cooling protocol for
a micro-mechanical resonator by employing a superconducting flux qubit. A
Lorentz force, generated by the passive back-action of the resonator's
displacement, can cool down the thermal motion of the mechanical resonator by
applying an appropriate microwave drive to the qubit. We show that this onchip
cooling protocol, with well-controlled cooling power and a tunable response
time of passive back-action, can be highly efficient. With feasible
experimental parameters, the effective mode temperature of a resonator could be
cooled down by several orders of magnitude.Comment: 10 pages, 4 figure
Quantum Zeno effect with a superconducting qubit
Detailed schemes are investigated for experimental verification of Quantum
Zeno effect with a superconducting qubit. A superconducting qubit is affected
by a dephasing noise whose spectrum is 1/f, and so the decay process of a
superconducting qubit shows a naturally non-exponential behavior due to an
infinite correlation time of 1/f noise. Since projective measurements can
easily influence the decay dynamics having such non-exponential feature, a
superconducting qubit is a promising system to observe Quantum Zeno effect. We
have studied how a sequence of projective measurements can change the dephasing
process and also we have suggested experimental ways to observe Quantum Zeno
effect with a superconducting qubit. It would be possible to demonstrate our
prediction in the current technology
Influence of deflocculant on the isoelectric point of refractory powders: Considerations on the action of deflocculant
Isoelectric point changes in suspensions of refractory materials vis-a-vis the role of deflocculants used in monolithic refractories were investigated by considering the mineral compositions and adsorbed ions in four kinds of clay. Three types of curves represented the relation between the isoelectric point and the deflocculant. The surface charge of clay particles in the suspensions became negative as a result of the deflocculant, since the isoelectric point of suspensions decreased as the deflocculant was added. The isoelectric point changes of calcined alumina were also compared with those of the clays, and a similar phenomenon was observed, except that the deflocculant dispersed the calcined alumina better than it did the clays. A simple model was used to analyze the results
Dephasing of a superconducting flux qubit
In order to gain a better understanding of the origin of decoherence in
superconducting flux qubits, we have measured the magnetic field dependence of
the characteristic energy relaxation time () and echo phase relaxation
time () near the optimal operating point of a flux qubit. We
have measured by means of the phase cycling method. At the
optimal point, we found the relation . This means
that the echo decay time is {\it limited by the energy relaxation} (
process). Moving away from the optimal point, we observe a {\it linear}
increase of the phase relaxation rate () with the applied
external magnetic flux. This behavior can be well explained by the influence of
magnetic flux noise with a spectrum on the qubit
- …