83 research outputs found
Total Representations
Almost all representations considered in computable analysis are partial. We
provide arguments in favor of total representations (by elements of the Baire
space). Total representations make the well known analogy between numberings
and representations closer, unify some terminology, simplify some technical
details, suggest interesting open questions and new invariants of topological
spaces relevant to computable analysis.Comment: 30 page
Computing Solution Operators of Boundary-value Problems for Some Linear Hyperbolic Systems of PDEs
We discuss possibilities of application of Numerical Analysis methods to
proving computability, in the sense of the TTE approach, of solution operators
of boundary-value problems for systems of PDEs. We prove computability of the
solution operator for a symmetric hyperbolic system with computable real
coefficients and dissipative boundary conditions, and of the Cauchy problem for
the same system (we also prove computable dependence on the coefficients) in a
cube . Such systems describe a wide variety of physical
processes (e.g. elasticity, acoustics, Maxwell equations). Moreover, many
boundary-value problems for the wave equation also can be reduced to this case,
thus we partially answer a question raised in Weihrauch and Zhong (2002).
Compared with most of other existing methods of proving computability for PDEs,
this method does not require existence of explicit solution formulas and is
thus applicable to a broader class of (systems of) equations.Comment: 31 page
First Order Theories of Some Lattices of Open Sets
We show that the first order theory of the lattice of open sets in some
natural topological spaces is -equivalent to second order arithmetic. We
also show that for many natural computable metric spaces and computable domains
the first order theory of the lattice of effectively open sets is undecidable.
Moreover, for several important spaces (e.g., , , and the
domain ) this theory is -equivalent to first order arithmetic
Efficient Algorithms for Membership in Boolean Hierarchies of Regular Languages
The purpose of this paper is to provide efficient algorithms that decide
membership for classes of several Boolean hierarchies for which efficiency (or
even decidability) were previously not known. We develop new forbidden-chain
characterizations for the single levels of these hierarchies and obtain the
following results: - The classes of the Boolean hierarchy over level
of the dot-depth hierarchy are decidable in (previously only the
decidability was known). The same remains true if predicates mod for fixed
are allowed. - If modular predicates for arbitrary are allowed, then
the classes of the Boolean hierarchy over level are decidable. - For
the restricted case of a two-letter alphabet, the classes of the Boolean
hierarchy over level of the Straubing-Th\'erien hierarchy are
decidable in . This is the first decidability result for this hierarchy. -
The membership problems for all mentioned Boolean-hierarchy classes are
logspace many-one hard for . - The membership problems for quasi-aperiodic
languages and for -quasi-aperiodic languages are logspace many-one complete
for
- …