83 research outputs found

    Total Representations

    Full text link
    Almost all representations considered in computable analysis are partial. We provide arguments in favor of total representations (by elements of the Baire space). Total representations make the well known analogy between numberings and representations closer, unify some terminology, simplify some technical details, suggest interesting open questions and new invariants of topological spaces relevant to computable analysis.Comment: 30 page

    Computing Solution Operators of Boundary-value Problems for Some Linear Hyperbolic Systems of PDEs

    Full text link
    We discuss possibilities of application of Numerical Analysis methods to proving computability, in the sense of the TTE approach, of solution operators of boundary-value problems for systems of PDEs. We prove computability of the solution operator for a symmetric hyperbolic system with computable real coefficients and dissipative boundary conditions, and of the Cauchy problem for the same system (we also prove computable dependence on the coefficients) in a cube Q⊆RmQ\subseteq\mathbb R^m. Such systems describe a wide variety of physical processes (e.g. elasticity, acoustics, Maxwell equations). Moreover, many boundary-value problems for the wave equation also can be reduced to this case, thus we partially answer a question raised in Weihrauch and Zhong (2002). Compared with most of other existing methods of proving computability for PDEs, this method does not require existence of explicit solution formulas and is thus applicable to a broader class of (systems of) equations.Comment: 31 page

    First Order Theories of Some Lattices of Open Sets

    Full text link
    We show that the first order theory of the lattice of open sets in some natural topological spaces is mm-equivalent to second order arithmetic. We also show that for many natural computable metric spaces and computable domains the first order theory of the lattice of effectively open sets is undecidable. Moreover, for several important spaces (e.g., Rn\mathbb{R}^n, n≥1n\geq1, and the domain PωP\omega) this theory is mm-equivalent to first order arithmetic

    Efficient Algorithms for Membership in Boolean Hierarchies of Regular Languages

    Get PDF
    The purpose of this paper is to provide efficient algorithms that decide membership for classes of several Boolean hierarchies for which efficiency (or even decidability) were previously not known. We develop new forbidden-chain characterizations for the single levels of these hierarchies and obtain the following results: - The classes of the Boolean hierarchy over level Σ1\Sigma_1 of the dot-depth hierarchy are decidable in NLNL (previously only the decidability was known). The same remains true if predicates mod dd for fixed dd are allowed. - If modular predicates for arbitrary dd are allowed, then the classes of the Boolean hierarchy over level Σ1\Sigma_1 are decidable. - For the restricted case of a two-letter alphabet, the classes of the Boolean hierarchy over level Σ2\Sigma_2 of the Straubing-Th\'erien hierarchy are decidable in NLNL. This is the first decidability result for this hierarchy. - The membership problems for all mentioned Boolean-hierarchy classes are logspace many-one hard for NLNL. - The membership problems for quasi-aperiodic languages and for dd-quasi-aperiodic languages are logspace many-one complete for PSPACEPSPACE
    • …
    corecore