5 research outputs found

    Применение микробиологических методов для повышения нефтеотдачи на примере нефтяного месторождения Мухто (Сахалинская область)

    Get PDF
    Подбор и применение микробиологического метода увеличения нефтеотдачи на месторождении РН-Сахалинморнефтегаз.Актуальность этого метода заключается в том, что этот метод позволяет извлекать трудноизвлекаемые запасы нефти, которые увеличиваются с каждым годом. В этой работе выбирается наиболее эффективный микробный агент, и рассчитывается рентабельность этого нововведения для компании.Selection and application of the microbiological method of increasing oil recovery at the RN-Sakhalinmorneftegaz.The relevance of this method lies in the fact that this method allows you to extract hard-to-recover oil reserves, which increase every year. In this paper, the most effective microbial agent is selected, and the profitability of this innovation for the company is calculated

    Non-manifesting AHI1 truncations indicate localized loss-of-function tolerance in a severe Mendelian disease gene

    Get PDF
    Determination of variant pathogenicity represents a major challenge in the era of high-throughput sequencing. Erroneous categorization may result if variants affect genes that are in fact dispensable. We demonstrate that this also applies to rare, apparently unambiguous truncating mutations of an established disease gene. By whole-exome sequencing (WES) in a consanguineous family with congenital non-syndromic deafness, we unexpectedly identified a homozygous nonsense variant, p.Arg1066*, in AHI1, a gene associated with Joubert syndrome (JBTS), a severe recessive ciliopathy. None of four homozygotes expressed any signs of JBTS, and one of them had normal hearing, which also ruled out p.Arg1066* as the cause of deafness. Homozygosity mapping and WES in the only other reported JBTS family with a homozygous C-terminal truncation (p.Trp1088Leufs*16) confirmed AHI1 as disease gene, but based on a more N-terminal missense mutation impairing WD40-repeat formation. Morpholinos against N-terminal zebrafish Ahi1, orthologous to where human mutations cluster, produced a ciliopathy, but targeting near human p.Arg1066 and p.Trp1088 did not. Most AHI1 mutations in JBTS patients result in truncated protein lacking WD40-repeats and the SH3 domain; disease was hitherto attributed to loss of these protein interaction modules. Our findings indicate that normal development does not require the C-terminal SH3 domain. This has far-reaching implications, considering that variants like p.Glu984* identified by preconception screening (‘Kingsmore panel') do not necessarily indicate JBTS carriership. Genomes of individuals with consanguineous background are enriched for homozygous variants that may unmask dispensable regions of disease genes and unrecognized false positives in diagnostic large-scale sequencing and preconception carrier screenin

    A heritable microduplication encompassing TBL1XR1 causes a genomic sister-disorder for the 3q26.32 microdeletion syndrome

    No full text
    Recently, a new syndrome with intellectual disability (ID) and dysmorphic features due to deletions or point mutations within the TBL1XR1 gene located in the chromosomal band 3q26.32 has been described (MRD41, OMIM 616944). One recurrent point mutation in the TBL1XR1 gene has been identified as the cause of Pierpont syndrome (OMIM 602342), a distinct intellectual disability syndrome with plantar lipomatosis. In addition, different de novo point mutations in the TBL1XR1 gene have been found in patients with autism spectrum disorders (ASD) and intellectual disability. Here, we report four patients from two unrelated families in whom array-CGH analysis and real-time quantitative PCR of genomic DNA revealed a TBL1XR1-microduplication. Adjacent genes were not affected. The microduplication occurred as a de novo event in one patient, whereas the other three cases occurred in two generations of a second, unrelated family. We compare and contrast the clinical findings in TBL1XR1 microdeletion, point mutation, and microduplication cases and expand the TBL1XR1-associated phenotypic spectrum. ID, hearing loss, and ASD are common features of TBL1XR1-associated diseases. Our clinical observations add to the increasing evidence of the role of TBL1XR1 in brain development, and they simultaneously demonstrate that different genetic disease mechanisms affecting TBL1XR1 can lead to similar ID phenotypes. The TBL1XR1-microduplication syndrome is an intellectual disability/learning disability syndrome with associated incomplete penetrance ASD, hearing loss, and delay of puberty. Its phenotypic overlap indicates that it is a genomic sister-disorder to the 3q26.32 microdeletion syndrome

    Non-manifesting AHI1 truncations indicate localized loss-of-function tolerance in a severe Mendelian disease gene

    Full text link
    Determination of variant pathogenicity represents a major challenge in the era of high-throughput sequencing. Erroneous categorization may result if variants affect genes that are in fact dispensable. We demonstrate that this also applies to rare, apparently unambiguous truncating mutations of an established disease gene. By whole-exome sequencing (WES) in a consanguineous family with congenital non-syndromic deafness, we unexpectedly identified a homozygous nonsense variant, p.Arg1066*, in AHI1, a gene associated with Joubert syndrome (JBTS), a severe recessive ciliopathy. None of four homozygotes expressed any signs of JBTS, and one of them had normal hearing, which also ruled out p.Arg1066* as the cause of deafness. Homozygosity mapping and WES in the only other reported JBTS family with a homozygous C-terminal truncation (p.Trp1088Leufs*16) confirmed AHI1 as disease gene, but based on a more N-terminal missense mutation impairing WD40-repeat formation. Morpholinos against N-terminal zebrafish Ahi1, orthologous to where human mutations cluster, produced a ciliopathy, but targeting near human p.Arg1066 and p.Trp1088 did not. Most AHI1 mutations in JBTS patients result in truncated protein lacking WD40-repeats and the SH3 domain; disease was hitherto attributed to loss of these protein interaction modules. Our findings indicate that normal development does not require the C-terminal SH3 domain. This has far-reaching implications, considering that variants like p.Glu984* identified by preconception screening ('Kingsmore panel') do not necessarily indicate JBTS carriership. Genomes of individuals with consanguineous background are enriched for homozygous variants that may unmask dispensable regions of disease genes and unrecognized false positives in diagnostic large-scale sequencing and preconception carrier screening
    corecore