7 research outputs found

    Design concepts for broadband high-efficiency DOEs

    Get PDF
    Several design-concepts are presented for so-called efficiency achromatized diffractive optical elements (EA-DOEs) possessing diffraction efficiency larger than 97% over a broad spectral range. We start with tracing two different methods for surface relief profiles well known from the literature: common depth and multilayer EA-DOEs. Successively we present the following new approaches together with design parameters and performance properties: 1) gradient-index EA DOEs, 2) sub-wavelength EA-DOEs, and 3) a so-called cut-and-paste strategy. All designs are based on scalar assumptions and certain necessary dispersion relations of two different materials. The scalar assumption is no real limitation as the minimum zone width of our main application, the correction of chromatic aberrations, is 50 -100 times the wavelength. From aforementioned relations, design parameters as profile heights are derived and the resulting diffraction efficiency can be deduced. Additionally it turns out that the necessary dispersion relation concerning the sub-wavelength EA-DOE is the same as for the common depth EA-DOE. Moreover, for the multilayer EA-DOE we were able to show that if the dispersion relations of the materials can be accurately described by a second order Cauchy series, the efficiency becomes generic and will be the same regardless of which materials are chosen. By proper choice of the materials, all types of EA-DOEs yield thicknesses of 10 - 30 µm which is more than ten times larger than for conventional DOEs. Due to the small refractive index difference of GRIN materials, such EA-DOEs exhibit thicknesses of 90 µm and more. Therefore, it is advisable to look for material combinations which yield thicknesses as small as possible
    corecore