11 research outputs found

    Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum

    Get PDF
    The quest for new antimalarial drugs, especially those with novel modes of action, is essential in the face of emerging drug-resistant parasites. Here we describe a new chemical class of molecules, pyrazoleamides, with potent activity against human malaria parasites and showing remarkably rapid parasite clearance in an in vivo model. Investigations involving pyrazoleamide-resistant parasites, whole-genome sequencing and gene transfers reveal that mutations in two proteins, a calcium-dependent protein kinase (PfCDPK5) and a P-type cation-ATPase (PfATP4), are necessary to impart full resistance to these compounds. A pyrazoleamide compound causes a rapid disruption of Na+ regulation in blood-stage Plasmodium falciparum parasites. Similar effect on Na+ homeostasis was recently reported for spiroindolones, which are antimalarials of a chemical class quite distinct from pyrazoleamides. Our results reveal that disruption of Na+ homeostasis in malaria parasites is a promising mode of antimalarial action mediated by at least two distinct chemical classes

    Contrasting ex vivo efficacies of "reversed chloroquine" compounds in chloroquine-resistant Plasmodium falciparum and P. vivax isolates.

    Get PDF
    Chloroquine (CQ) has been the mainstay of malaria treatment for more than 60 years. However, the emergence and spread of CQ resistance now restrict its use to only a few areas where malaria is endemic. The aim of the present study was to investigate whether a novel combination of a CQ-like moiety and an imipramine-like pharmacophore can reverse CQ resistance ex vivo. Between March to October 2011 and January to September 2013, two "reversed chloroquine" (RCQ) compounds (PL69 and PL106) were tested against multidrug-resistant field isolates of Plasmodium falciparum (n = 41) and Plasmodium vivax (n = 45) in Papua, Indonesia, using a modified ex vivo schizont maturation assay. The RCQ compounds showed high efficacy against both CQ-resistant P. falciparum and P. vivax field isolates. For P. falciparum, the median 50% inhibitory concentrations (IC50s) were 23.2 nM for PL69 and 26.6 nM for PL106, compared to 79.4 nM for unmodified CQ (P < 0.001 and P = 0.036, respectively). The corresponding values for P. vivax were 19.0, 60.0, and 60.9 nM (P < 0.001 and P = 0.018, respectively). There was a significant correlation between IC50s of CQ and PL69 (Spearman's rank correlation coefficient [r s] = 0.727, P < 0.001) and PL106 (rs = 0.830, P < 0.001) in P. vivax but not in P. falciparum. Both RCQs were equally active against the ring and trophozoite stages of P. falciparum, but in P. vivax, PL69 and PL106 showed less potent activity against trophozoite stages (median IC50s, 130.2 and 172.5 nM) compared to ring stages (median IC50s, 17.6 and 91.3 nM). RCQ compounds have enhanced ex vivo activity against CQ-resistant clinical isolates of P. falciparum and P. vivax, suggesting the potential use of reversal agents in antimalarial drug development. Interspecies differences in RCQ compound activity may indicate differences in CQ pharmacokinetics between the two Plasmodium species

    Potent ex vivo activity of naphthoquine and methylene blue against drug-resistant clinical isolates of Plasmodium falciparum and Plasmodium vivax

    Get PDF
    The 4-aminoquinoline naphthoquine (NQ) and the thiazine dye methylene blue (MB) have potent in vitro efficacies against Plasmodium falciparum, but susceptibility data for P. vivax are limited. The species- and stage-specific ex vivo activities of NQ and MB were assessed using a modified schizont maturation assay on clinical field isolates from Papua, Indonesia, where multidrug-resistant P. falciparum and P. vivax are prevalent. Both compounds were highly active against P. falciparum (median [range] 50% inhibitory concentration [IC50]: NQ, 8.0 nM [2.6 to 71.8 nM]; and MB, 1.6 nM [0.2 to 7.0 nM]) and P. vivax (NQ, 7.8 nM [1.5 to 34.2 nM]; and MB, 1.2 nM [0.4 to 4.3 nM]). Stage-specific drug susceptibility assays revealed significantly greater IC50s in parasites exposed at the trophozoite stage than at the ring stage for NQ in P. falciparum (26.5 versus 5.1 nM, P = 0.021) and P. vivax (341.6 versus 6.5 nM, P = 0.021) and for MB in P. vivax (10.1 versus 1.6 nM, P = 0.010). The excellent ex vivo activities of NQ and MB against both P. falciparum and P. vivax highlight their potential utility for the treatment of multidrug-resistant malaria in areas where both species are endemic

    Quantification of Plasmodium ex vivo drug susceptibility by flow cytometry.

    Get PDF
    The emergence and spread of multidrug-resistant Plasmodium falciparum and Plasmodium vivax highlights the need for objective measures of ex vivo drug susceptibility. Flow cytometry (FC) has potential to provide a robust and rapid quantification of ex vivo parasite growth.Field isolates from Papua, Indonesia, underwent ex vivo drug susceptibility testing against chloroquine, amodiaquine, piperaquine, mefloquine, and artesunate. A single nucleic acid stain (i.e., hydroethidine (HE) for P. falciparum and SYBR Green I (SG) for P. vivax) was used to quantify infected red blood cells by FC-based signal detection. Data derived by FC were compared to standard quantification by light microscopy (LM). A subset of isolates was used to compare single and double staining techniques.In total, 57 P. falciparum and 23 P. vivax field isolates were collected for ex vivo drug susceptibility testing. Reliable paired data between LM and FC was obtained for 88 % (295/334) of these assays. The median difference of derived IC50 values varied from -5.4 to 6.1 nM, associated with 0.83-1.23 fold change in IC50 values between LM and FC. In 15 assays (5.1 %), the derived difference of IC50 estimates was beyond the 95 % limits of agreement; in eleven assays (3.7 %), this was attributable to low parasite growth (final schizont count < 40 %), and in four assays (1.4 %) due to low initial parasitaemia at the start of assay (<2000 µl(-1)). In a subset of seven samples, LM, single and double staining FC techniques generated similar IC50 values.A single staining FC-based assay using a portable cytometer provides a simple, fast and versatile platform for field surveillance of ex vivo drug susceptibility in clinical P. falciparum and P. vivax isolates

    Identifying targets of protective antibodies against severe malaria in Papua, Indonesia using locally expressed domains of Plasmodium falciparum Erythrocyte Membrane Protein 1

    No full text
    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a diverse family of multi-domain proteins expressed on the surface of malaria-infected erythrocytes, is an important target of protective immunity against malaria. Our group recently studied transcription of the var genes encoding PfEMP1 in individuals from Papua, Indonesia with severe or uncomplicated malaria. We cloned and expressed domains from 32 PfEMP1s including 22 that were upregulated in severe malaria and 10 that were upregulated in uncomplicated malaria, using a wheat germ cell-free expression system. We used Luminex technology to measure IgG antibodies to these 32 domains and control proteins in 63 individuals (11 children). At presentation to hospital, levels of antibodies to PfEMP1 domains were either higher in uncomplicated malaria or were not significantly different between groups. Using principal components analysis, antibodies to three of 32 domains were highly discriminatory between groups. These included two domains upregulated in severe malaria, a DBLβ13 domain and a CIDRα1.6 domain (which has been previously implicated in severe malaria pathogenesis), and a DBLδ domain that was upregulated in uncomplicated malaria. Antibody to control non-PfEMP1 antigens did not differ with disease severity. Antibodies to PfEMP1 domains differ with malaria severity. Lack of antibodies to locally expressed PfEMP1 types, including both domains previously associated with severe malaria and newly identified targets, may in part explain malaria severity in Papuan adults

    The &ITPlasmodium falciparum &ITtranscriptome in severe malaria reveals altered expression of genes involved in important processes including surface antigen-encoding &ITvar &ITgenes

    No full text
    Within the human host, the malaria parasite Plasmodium falciparum is exposed to multiple selection pressures. The host environment changes dramatically in severe malaria, but the extent to which the parasite responds to-or is selected by-this environment remains unclear. From previous studies, the parasites that cause severe malaria appear to increase expression of a restricted but poorly defined subset of the PfEMP1 variant, surface antigens. PfEMP1s are major targets of protective immunity. Here, we used RNA sequencing (RNAseq) to analyse gene expression in 44 parasite isolates that caused severe and uncomplicated malaria in Papuan patients. The transcriptomes of 19 parasite isolates associated with severe malaria indicated that these parasites had decreased glycolysis without activation of compensatory pathways; altered chromatin structure and probably transcriptional regulation through decreased histone methylation; reduced surface expression of PfEMP1; and down-regulated expression of multiple chaperone proteins. Our RNAseq also identified novel associations between disease severity and PfEMP1 transcripts, domains, and smaller sequence segments and also confirmed all previously reported associations between expressed PfEMP1 sequences and severe disease. These findings will inform efforts to identify vaccine targets for severe malaria and also indicate how parasites adapt to-or are selected by-the host environment in severe malaria

    The Plasmodium falciparum transcriptome in severe malaria reveals altered expression of genes involved in important processes including surface antigen-encoding var genes

    No full text
    Within the human host, the malaria parasite Plasmodium falciparum is exposed to multiple selection pressures. The host environment changes dramatically in severe malaria, but the extent to which the parasite responds to-or is selected by-this environment remains unclear. From previous studies, the parasites that cause severe malaria appear to increase expression of a restricted but poorly defined subset of the PfEMP1 variant, surface antigens. PfEMP1s are major targets of protective immunity. Here, we used RNA sequencing (RNAseq) to analyse gene expression in 44 parasite isolates that caused severe and uncomplicated malaria in Papuan patients. The transcriptomes of 19 parasite isolates associated with severe malaria indicated that these parasites had decreased glycolysis without activation of compensatory pathways; altered chromatin structure and probably transcriptional regulation through decreased histone methylation; reduced surface expression of PfEMP1; and down-regulated expression of multiple chaperone proteins. Our RNAseq also identified novel associations between disease severity and PfEMP1 transcripts, domains, and smaller sequence segments and also confirmed all previously reported associations between expressed PfEMP1 sequences and severe disease. These findings will inform efforts to identify vaccine targets for severe malaria and also indicate how parasites adapt to-or are selected by-the host environment in severe malaria

    Differences in PfEMP1s recognized by antibodies from patients with uncomplicated or severe malaria.

    Get PDF
    Background Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) variants are encoded by var genes and mediate pathogenic cytoadhesion and antigenic variation in malaria. PfEMP1s can be broadly divided into three principal groups (A, B and C) and they contain conserved arrangements of functional domains called domain cassettes. Despite their tremendous diversity there is compelling evidence that a restricted subset of PfEMP1s is expressed in severe disease. In this study antibodies from patients with severe and uncomplicated malaria were compared for differences in reactivity with a range of PfEMP1s to determine whether antibodies to particular PfEMP1 domains were associated with severe or uncomplicated malaria. Methods Parts of expressed var genes in a severe malaria patient were identified by RNAseq and several of these partial PfEMP1 domains were expressed together with others from laboratory isolates. Antibodies from Papuan patients to these parts of multiple PfEMP1 proteins were measured. Results Patients with uncomplicated malaria were more likely to have antibodies that recognized PfEMP1 of Group C type and recognized a broader repertoire of group A and B PfEMP1s than patients with severe malaria. Conclusion These data suggest that exposure to a broad range of group A and B PfEMP1s is associated with protection from severe disease in Papua, Indonesia.</p

    Longitudinal ex vivo and molecular trends of chloroquine and piperaquine activity against Plasmodium falciparum and P. vivax before and after introduction of artemisinin-based combination therapy in Papua, Indonesia

    No full text
    Drug resistant Plasmodium parasites are a major threat to malaria control and elimination. After reports of high levels of multidrug resistant P. falciparum and P. vivax in Indonesia, in 2005, the national first-line treatment policy for uncomplicated malaria was changed in March 2006, to dihydroartemisinin-piperaquine against all species. This study assessed the temporal trends in ex vivo drug susceptibility to chloroquine (CQ) and piperaquine (PIP) for both P. falciparum and P. vivax clinical isolates collected between 2004 and 2018, by using schizont maturation assays, and genotyped a subset of isolates for known and putative molecular markers of CQ and PIP resistance by using Sanger and next generation whole genome sequencing. The median CQ IC50 values varied significantly between years in both Plasmodium species, but there was no significant trend over time. In contrast, there was a significant trend for increasing PIP IC50s in both Plasmodium species from 2010 onwards. Whereas the South American CQ resistant 7G8 pfcrt SVMNT isoform has been fixed since 2005 in the study area, the pfmdr1 86Y allele frequencies decreased and became fixed at the wild-type allele in 2015. In P. vivax isolates, putative markers of CQ resistance (no pvcrt-o AAG (K10) insertion and pvmdr1 Y967F and F1076L) were fixed at the mutant alleles since 2005. None of the putative PIP resistance markers were detected in P. falciparum. The ex vivo drug susceptibility and molecular analysis of CQ and PIP efficacy for P. falciparum and P. vivax after 12 years of intense drug pressure with DHP suggests that whilst the degree of CQ resistance appears to have been sustained, there has been a slight decline in PIP susceptibility, although this does not appear to have reached clinically significant levels. The observed decreasing trend in ex vivo PIP susceptibility highlights the importance of ongoing surveillance

    Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum

    Get PDF
    The quest for new antimalarial drugs, especially those with novel modes of action, is essential in the face of emerging drug-resistant parasites. Here we describe a new chemical class of molecules, pyrazoleamides, with potent activity against human malaria parasites and showing remarkably rapid parasite clearance in an in vivo model. Investigations involving pyrazoleamide-resistant parasites, whole-genome sequencing and gene transfers reveal that mutations in two proteins, a calcium-dependent protein kinase (PfCDPK5) and a P-type cation-ATPase (PfATP4), are necessary to impart full resistance to these compounds. A pyrazoleamide compound causes a rapid disruption of Na+ regulation in blood-stage Plasmodium falciparum parasites. Similar effect on Na+ homeostasis was recently reported for spiroindolones, which are antimalarials of a chemical class quite distinct from pyrazoleamides. Our results reveal that disruption of Na+ homeostasis in malaria parasites is a promising mode of antimalarial action mediated by at least two distinct chemical classes
    corecore