95 research outputs found
Compton scattering beyond the impulse approximation
We treat the non-relativistic Compton scattering process in which an incoming
photon scatters from an N-electron many-body state to yield an outgoing photon
and a recoil electron, without invoking the commonly used frameworks of either
the impulse approximation (IA) or the independent particle model (IPM). An
expression for the associated triple differential scattering cross section is
obtained in terms of Dyson orbitals, which give the overlap amplitudes between
the N-electron initial state and the (N-1) electron singly ionized quantum
states of the target. We show how in the high energy transfer regime, one can
recover from our general formalism the standard IA based formula for the cross
section which involves the ground state electron momentum density (EMD) of the
initial state. Our formalism will permit the analysis and interpretation of
electronic transitions in correlated electron systems via inelastic x-ray
scattering (IXS) spectroscopy beyond the constraints of the IA and the IPM.Comment: 7 pages, 1 figur
A human ciliopathy reveals essential functions for NEK10 in airway mucociliary clearance
Mucociliary clearance, the physiological process by which mammalian conducting airways expel pathogens and unwanted surface materials from the respiratory tract, depends on the coordinated function of multiple specialized cell types, including basal stem cells, mucus-secreting goblet cells, motile ciliated cells, cystic fibrosis transmembrane conductance regulator (CFTR)-rich ionocytes, and immune cells1,2. Bronchiectasis, a syndrome of pathological airway dilation associated with impaired mucociliary clearance, may occur sporadically or as a consequence of Mendelian inheritance, for example in cystic fibrosis, primary ciliary dyskinesia (PCD), and select immunodeficiencies3. Previous studies have identified mutations that affect ciliary structure and nucleation in PCD4, but the regulation of mucociliary transport remains incompletely understood, and therapeutic targets for its modulation are lacking. Here we identify a bronchiectasis syndrome caused by mutations that inactivate NIMA-related kinase 10 (NEK10), a protein kinase with previously unknown in vivo functions in mammals. Genetically modified primary human airway cultures establish NEK10 as a ciliated-cell-specific kinase whose activity regulates the motile ciliary proteome to promote ciliary length and mucociliary transport but which is dispensable for normal ciliary number, radial structure, and beat frequency. Together, these data identify a novel and likely targetable signaling axis that controls motile ciliary function in humans and has potential implications for other respiratory disorders that are characterized by impaired mucociliary clearance
Psychology and aggression
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68264/2/10.1177_002200275900300301.pd
Reconstructing sea-level change from the internal architecture of stromatolite reefs: an example from the Mesoproterozoic Sulky Formation, Dismal Lakes Group, arctic Canada
Ablação ocular no camarão Macrobrachium rosenbergii (De Man) (Crustacea, Decapoda, Palaemonidae): efeitos sobre a reprodução, pigmentação epidérmica e atividade alimentar
- …
