1,671 research outputs found
Massive Accretion Disks
Recent high resolution near infrared (HST-NICMOS) and mm-interferometric
imaging have revealed dense gas and dust accretion disks in nearby
ultra-luminous galactic nuclei. In the best studied ultraluminous IR galaxy,
Arp 220, the 2 micron imaging shows dust disks in both of the merging galactic
nuclei and mm-CO line imaging indicates molecular gas masses approx. 10^9 M_sun
for each disk. The two gas disks in Arp 220 are counterrotating and their
dynamical masses are approx. 2x10^9 M_sun, that is, only slightly larger than
the gas masses. These disks have radii approx 100 pc and thickness 10-50 pc.
The high brightness temperatures of the CO lines indicate that the gas in the
disks has area filling factors of approx. 25-50% and mean densities of >~ 10^4
cm^(-3). Within these nuclear disks, the rate of massive star formation is
undoubtedly prodigious and, given the high viscosity of the gas, there will
also be high radial accretion rates, perhaps >~ 10 M_sun/yr. If this inflow
persists to very small radii, it is enough to feed even the highest luminosity
AGNs.Comment: LaTex, 6 pages with 1 postscript and 1 jpg figure, and 1 postscript
table, To appear in the proc. of the Ringberg workshop on "Ultraluminous
Galaxies: Monsters or Babies" (Ringberg castle, Sept. 1998), Ap&SS, in pres
The Extreme Nuclear Environments of Sgr A* and Arp 220
The dense ISM which is the fuel for both nuclear starbursts is believed to be accreted to the nucleus by stellar bars and galactic interactions. In this contribution, I summarize the observational results for two galactic nuclei at the extreme ends of starburst/AGN activity − our own Galactic nucleus with SgrA* and the ULIRG Arp 220. I discuss theoretical considerations for the properties of the ISM − its density and scale height, whether it is likely to clump into gravitational bound GMCs − and the self-regulation of SB and AGN fueling due to radiation pressure support of the ISM. The latter yields an Eddington-like limit on the activity for both SB and AGN, corresponding to approximately 500 L_ʘ/M_ʘ for optically thick regions in which the radiation has been degraded to the NIR
The zCOSMOS 10k-sample: the role of galaxy stellar mass in the colour-density relation up to z ~ 1
Aims. With the first ~10 000 spectra of the flux limited zCOSMOS sample (I_(AB) ≤ 22.5) we want to study the evolution of environmental effects
on galaxy properties since z ~ 1.0, and to disentangle the dependence among galaxy colour, stellar mass and local density.
Methods. We use our previously derived 3D local density contrast δ, computed with the 5th nearest neighbour approach, to study the evolution
with z of the environmental effects on galaxy U-B colour, D4000 Å break and [OII]λ3727 equivalent width (EW[OII]). We also analyze the implications
due to the use of different galaxy selections, using luminosity or stellar mass, and we disentangle the relations among colour, stellar mass
and δ studying the colour-density relation in narrow mass bins.
Results. We confirm that within a luminosity-limited sample (M_B ≤ −20.5 − z) the fraction of red (U − B ≥ 1) galaxies depends on δ at least
up to z ~ 1, with red galaxies residing mainly in high densities. This trend becomes weaker for increasing redshifts, and it is mirrored by the
behaviour of the fraction of galaxies with D4000 Å break ≥1.4. We also find that up to z ~ 1 the fraction of galaxies with log(EW[OII]) ≥ 1.15 is
higher for lower δ, and also this dependence weakens for increasing z. Given the triple dependence among galaxy colours, stellar mass and δ, the
colour-δ relation that we find in the luminosity-selected sample can be due to the broad range of stellar masses embedded in the sample. Thus, we
study the colour-δ relation in narrow mass bins within mass complete subsamples, defining red galaxies with a colour threshold roughly parallel
to the red sequence in the colour-mass plane. We find that once mass is fixed the colour-δ relation is globally flat up to z ~ 1 for galaxies with
log(M/M_⊙) ≳ 10.7. This means that for these masses any colour-δ relation found within a luminosity-selected sample is the result of the combined
colour-mass and mass-δ relations. On the contrary, even at fixed mass we observe that within 0.1 ≤ z ≤ 0.5 the fraction of red galaxies with
log(M/M_⊙) ≲ 10.7 depends on δ. For these mass and redshift ranges, environment affects directly also galaxy colours.
Conclusions. We suggest a scenario in which the colour depends primarily on stellar mass, but for an intermediate mass regime (10.2 ≲ log(M/M_⊙) ≲ 10.7) the local density modulates this dependence. These relatively low mass galaxies formed more recently, in an epoch when
more evolved structures were already in place, and their longer SFH allowed environment-driven physical processes to operate during longer
periods of time
Black hole accretion and host galaxies of obscured quasars in XMM-COSMOS
Aims. We explore the connection between black hole growth at the center of obscured quasars selected from the XMM-COSMOS survey and the physical properties of their host galaxies. We study a bolometric regime ( ⟨ L_(bol) ⟩ = 8 × 10^(45) erg s^(-1)) where several theoretical models invoke major galaxy mergers as the main fueling channel for black hole accretion.
Methods. To derive robust estimates of the host galaxy properties, we use an SED fitting technique to distinguish the AGN and host galaxy emission. We evaluate the effect on galaxy properties estimates of being unable to remove the nuclear emission from the SED. The superb multi-wavelength coverage of the COSMOS field allows us to obtain reliable estimates of the total stellar masses and star formation rates (SFRs) of the hosts. We supplement this information with a morphological analysis of the ACS/HST images, optical spectroscopy, and an X-ray spectral analysis.
Results. We confirm that obscured quasars mainly reside in massive galaxies (M_⋆ > 10^(10)M_⊙) and that the fraction of galaxies hosting such powerful quasars monotonically increases with the stellar mass. We stress the limitation of the use of rest-frame color − magnitude diagrams as a diagnostic tool for studying galaxy evolution and inferring the influence that AGN activity can have on such a process. We instead use the correlation between SFR and stellar mass found for star-forming galaxies to discuss the physical properties of the hosts. We find that at z ~ 1, ≈62% of Type-2 QSOs hosts are actively forming stars and that their rates are comparable to those measured for normal star-forming galaxies. The fraction of star-forming hosts increases with redshift: ≈ 71% at z ~ 2, and 100% at z ~ 3. We also find that the evolution from z ~ 1 to z ~ 3 of the specific SFR of the Type-2 QSO hosts is in excellent agreement with that measured for star-forming galaxies. From the morphological analysis, we conclude that most of the objects are bulge-dominated galaxies, and that only a few of them exhibit signs of recent mergers or disks. Finally, bulge-dominated galaxies tend to host Type-2 QSOs with low Eddington ratios (λ 0.1)
zCOSMOS 10k-bright spectroscopic sample: Exploring mass and environment dependence in early-type galaxies
Aims. We present the analysis of the U – V rest-frame color distribution and some spectral features as a function of mass and environment for a sample of early-type galaxies up to z = 1 extracted from the zCOSMOS spectroscopic survey. This analysis is used to place constraints on the relative importance of these two properties in controlling galaxy evolution.
Methods. We used the zCOSMOS 10k-bright sample, limited to the AB magnitude range 15 < I < 22.5, from which we extracted two different subsamples of early-type galaxies. The first sample (“red galaxies”) was selected using a photometric classification (2098 galaxies), while in the second case (“ETGs”) we combined morphological, photometric, and spectroscopic properties to obtain a more reliable sample of elliptical, red, passive, early-type galaxies (981 galaxies). The analysis is performed at fixed mass to search for any dependence of the color distribution on environment, and at fixed environment to search for any mass dependence.
Results. In agreement with the low redshift results of the SDSS, we find that the color distribution of red galaxies is not strongly dependent on environment for all mass bins, exhibiting only a weak trend such that galaxies in overdense regions (log_(10)(1+Δ) ~ 1.2) are redder than galaxies in underdense regions (log_(10)(1+Δ) ~ 0.1),
with a difference of = 0.027±0.008 mag. On the other hand, the dependence on mass is far more significant, and we find that the average colors of massive galaxies (log_(10)(M/M_☉) ~ 10.8) are redder by = 0.093±0.007 mag than low-mass galaxies (log_(10)(M/M_☉) ~ 10)
throughout the entire redshift range. We study the color-mass (U – V)_(rest) ∝ S_M ·log_(10)(M/M_☉) relation, finding a mean slope = 0.12±0.005, while the color-environment (U – V)_(rest) ∝ S_δ · log_(10)(1+Δ) relation is flatter, with a slope always smaller than S_δ ≈ 0.04.
The spectral analysis that we perform on our ETGs sample is in good agreement with our photometric results: we study the 4000 Å break and the equivalent width of the Hδ Balmer line, finding for D4000 a dependence on mass ( =0.11±0.02 between log_(10)(M/M_☉) ~ 10.2 and log_(10)(M/M_☉) ~ 10.8), and a much weaker dependence on environment ( = 0.05±0.02 between high and low environment quartiles). The same is true for the equivalent width of Hδ, for which we measure a difference of ΔEW0(Hδ) = 0.28±0.08 Å across the same mass range and no significant dependence on environment. By analyzing the lookback time of early-type galaxies, we support the possibility of a downsizing scenario, in which massive galaxies with a stronger D4000 and an almost constant equivalent width of Hδ formed their mass at higher redshift than lower mass ones. We also conclude that the main driver of galaxy evolution is the galaxy mass, the environment playing a subdominant role
zCOSMOS – 10k-bright spectroscopic sample : The bimodality in the galaxy stellar mass function: exploring its evolution with redshift
We present the galaxy stellar mass function (GSMF) to redshift z ≃ 1, based on the analysis of about 8500 galaxies with I < 22.5 (AB mag)
over 1.4 deg^2, which are part of the zCOSMOS-bright 10k spectroscopic sample. We investigate the total GSMF, as well as the contributions of
early- and late-type galaxies (ETGs and LTGs, respectively), defined by different criteria (broad-band spectral energy distribution, morphology,
spectral properties, or star formation activities). We unveil a galaxy bimodality in the global GSMF, whose shape is more accurately represented
by 2 Schechter functions, one linked to the ETG and the other to the LTG populations. For the global population, we confirm a mass-dependent
evolution (“mass-assembly downsizing”), i.e., galaxy number density increases with cosmic time by a factor of two between z = 1 and z = 0 for
intermediate-to-low mass (log(M/M_⊙) ~ 10.5) galaxies but less than 15% for log(M/M_⊙) > 11.We find that the GSMF evolution at intermediate-to-
low values of M(log(M/M_⊙) < 10.6) is mostly explained by the growth in stellar mass driven by smoothly decreasing star formation activities,
despite the redder colours predicted in particular at low redshift. The low residual evolution is consistent, on average, with ~0.16 merger per
galaxy per Gyr (of which fewer than 0.1 are major), with a hint of a decrease with cosmic time but not a clear dependence on the mass. From
the analysis of different galaxy types, we find that ETGs, regardless of the classification method, increase in number density with cosmic time
more rapidly with decreasing M, i.e., follow a top-down building history, with a median “building redshift” increasing with mass (z > 1 for
log(M/M_⊙) > 11), in contrast to hierarchical model predictions. For LTGs, we find that the number density of blue or spiral galaxies with
log(M/M_⊙) > 10 remains almost constant with cosmic time from z ~ 1. Instead, the most extreme population of star-forming galaxies (with
high specific star formation), at intermediate/high-mass, rapidly decreases in number density with cosmic time. Our data can be interpreted as
a combination of different effects. Firstly, we suggest a transformation, driven mainly by SFH, from blue, active, spiral galaxies of intermediate
mass to blue quiescent and subsequently (1−2 Gyr after) red, passive types of low specific star formation. We find an indication that the complete
morphological transformation, probably driven by dynamical processes, into red spheroidal galaxies, occurred on longer timescales or followed
after 1−2 Gyr. A continuous replacement of blue galaxies is expected to be accomplished by low-mass active spirals increasing their stellar
mass. We estimate the growth rate in number and mass density of the red galaxies at different redshifts and masses. The corresponding fraction
of blue galaxies that, at any given time, is transforming into red galaxies per Gyr, due to the quenching of their SFR, is on average ~25% for
log(M/M_⊙) < 11. We conclude that the build-up of galaxies and in particular of ETGs follows the same downsizing trend with mass (i.e. occurs
earlier for high-mass galaxies) as the formation of their stars and follows the converse of the trend predicted by current SAMs. In this scenario, we
expect there to be a negligible evolution of the galaxy baryonic mass function (GBMF) for the global population at all masses and a decrease with
cosmic time in the GBMF for the blue galaxy population at intermediate-high masses
The 10k zCOSMOS: Morphological Transformation of Galaxies in the Group Environment Since z ~1
We study the evolution of galaxies inside and outside of the group environment since z = 1 using a large well-defined set of groups and galaxies from the zCOSMOS-bright redshift survey in the COSMOS field. The fraction of galaxies with early-type morphologies increases monotonically with M_B luminosity and stellar mass and with cosmic epoch. It is higher in the groups than elsewhere, especially at later epochs. The emerging environmental effect is superposed on a strong global mass-driven evolution, and at z ~ 0.5 and log(M _*/M_⊙) ~ 10.2, the "effect" of the group environment is equivalent to (only) about 0.2 dex in stellar mass or 2 Gyr in time. The stellar mass function of galaxies in groups is enriched in massive galaxies. We directly determine the transformation rates from late to early morphologies, and for transformations involving color and star formation indicators. The transformation rates are systematically about twice as high in the groups as outside, or up to three to four times higher correcting for infall and the appearance of new groups. The rates reach values as high as 0.3-0.7 Gyr^(–1) in the groups (for masses around the crossing mass 10^(10.5) M_⊙), implying transformation timescales of 1.4-3 Gyr, compared with less than 0.2 Gyr^(–1), i.e., timescales >5 Gyr, outside of groups. All three transformation rates decrease at higher stellar masses, and must also decrease at lower masses below 10^(10) M _⊙ which we cannot probe well. The rates involving color and star formation are consistently higher than those for morphology, by a factor of about 50%. Our conclusion is that the transformations that drive the evolution of the overall galaxy population since z ~ 1 must occur at a rate two to four times higher in groups than outside of them
High mass star formation in the galaxy
The Galactic distributions of HI, H2, and HII regions are reviewed in order to elucidate the high mass star formation occurring in galactic spiral arms and in active galactic nuclei. Comparison of the large scale distributions of H2 gas and radio HII regions reveals that the rate of formation of OB stars depends on (n sub H2) sup 1.9 where (n sub H2) is the local mean density of H2 averaged over 300 pc scale lengths. In addition the efficiency of high mass star formation is a decreasing function of cloud mass in the range 200,000 to 3,000,000 solar mass. These results suggest that high mass star formation in the galactic disk is initiated by cloud-cloud collisions which are more frequent in the spiral arms due to orbit crowding. Cloud-cloud collisions may also be responsible for high rates of OB star formation in interacting galaxies and galactic nuclei. Based on analysis of the Infrared Astronomy Satellite (IRAS) and CO data for selected GMCs in the Galaxy, the ratio L sub IR/M sub H2 can be as high as 30 solar luminosity/solar mass for GMCs associated with HII regions. The L sub IR/M sub H2 ratios and dust temperature obtained in many of the high luminosity IRAS galaxies are similar to those encountered in galactic GMCs with OB star formation. High mass star formation is therefore a viable explanation for the high infrared luminosity of these galaxies
- …