75 research outputs found

    Towards Complex Tissues Replication: Multilayer Scaffold Integrating Biomimetic Nanohydroxyapatite/Chitosan Composites

    Get PDF
    This study explores an approach to design and prepare a multilayer scaffold mimicking interstratified natural tissue. This multilayer construct, composed of chitosan matrices with graded nanohydroxyapatite concentrations, was achieved through an in situ biomineralization process applied to individual layers. Three distinct precursor concentrations were considered, resulting in 10, 20, and 30 wt% nanohydroxyapatite content in each layer. The resulting chitosan/nanohydroxyapatite (Cs/n-HAp) scaffolds, created via freeze-drying, exhibited nanohydroxyapatite nucleation, homogeneous distribution, improved mechanical properties, and good cytocompatibility. The cytocompatibility analysis revealed that the Cs/n-HAp layers presented cell proliferation similar to the control in pure Cs for the samples with 10% n-HAp, indicating good cytocompatibility at this concentration, while no induction of apoptotic death pathways was demonstrated up to a 20 wt% n-Hap concentration. Successful multilayer assembly of Cs and Cs/n-HAp layers highlighted that the proposed approach represents a promising strategy for mimicking multifaceted tissues, such as osteochondral ones

    Ag X-ray fluorescence on different thickness and concentration layers

    Get PDF
    This work derives from the requirement to investigate on the silver surface enrichment of objects of historical and artistic interest using the X-ray fluorescence non-destructive technique (XRF). The aim is the thickness estimation through the experimental relationship between Kα Kβ and Kα Lα of Ag as a function of the thickness. Measurements on silver sheets of different thicknesses and three concentrations are carried out using a XRF spectrometer with a maximum voltage of 50kV. The results allow to analyse the plating layer of silver objects also to make other interesting considerations

    Acellular dermal matrix used in diabetic foot ulcers: Clinical outcomes supported by biochemical and histological analyses

    Get PDF
    Diabetic foot ulcer (DFU) is a diabetes complication which greatly impacts the patient’s quality of life, often leading to amputation of the affected limb unless there is a timely and adequate management of the patient. DFUs have a high economic impact for the national health system. Data have indeed shown that DFUs are a major cause of hospitalization for patients with diabetes. Based on that, DFUs represent a very important challenge for the national health system. Especially in developed countries diabetic patients are increasing at a very high rate and as expected, also the incidence of DFUs is increasing due to longevity of diabetic patients in the western population. Herein, the surgical approach focused on the targeted use of the acellular dermal matrix has been integrated with biochemical and morphological/histological analyses to obtain evidence-based information on the mechanisms underlying tissue regeneration. In this research report, the clinical results indicated decreased postoperative wound infection levels and a short healing time, with a sound regeneration of tissues. Here we demonstrate that the key biomarkers of wound healing process are activated at gene expression level and also synthesis of collagen I, collagen III and elastin is prompted and modulated within the 28-day period of observation. These analyses were run on five patients treated with Integra® sheet and five treated with the injectable matrix Integra® Flowable, for cavitary lesions. In fact, clinical evaluation of improved healing was, for the first time, supported by biochemical and histological analyses. For these reasons, the present work opens a new scenario in DFUs treatment and follow-up, laying the foundation for a tailored protocol towards complete healing in severe pathological conditions

    Serum osteoprotegerin is associated with pulse pressure in kidney transplant recipients

    Get PDF
    Pulse pressure (PP) reflects increased large artery stiffness, which is caused, in part, by arterial calcification in patients with chronic kidney disease. PP has been shown to predict both cardiovascular and cerebrovascular events in various patient populations, including kidney transplant (KTX) recipients. Osteoprotegerin (OPG) is a marker and regulator of arterial calcification, and it is related to cardiovascular survival in hemodialysis patients. Here we tested the hypothesis that OPG is associated with increased pulse pressure. We cross-sectionally analyzed the association between serum OPG and PP in a prevalent cohort of 969 KTX patients (mean age: 51 +/- 13 years, 57% male, 21% diabetics, mean eGFR 51 +/- 20 ml/min/1.73 m2). Independent associations were tested in a linear regression model adjusted for multiple covariables. PP was positively correlated with serum OPG (rho = 0.284, p < 0.001). Additionally, a positive correlation was seen between PP versus age (r = 0.358, p < 0.001), the Charlson Comorbidity Index (r = 0.232, p < 0.001), serum glucose (r = 0.172, p < 0.001), BMI (r = 0.133, p = 0.001) and serum cholesterol (r = 0.094, p = 0.003). PP was negatively correlated with serum Ca, albumin and eGFR. The association between PP and OPG remained significant after adjusting for multiple potentially relevant covariables (beta = 0.143, p < 0.001). We conclude that serum OPG is independently associated with pulse pressure in kidney transplant recipients

    Ag X-ray fluorescence on different thickness and concentration layers

    No full text
    This work derives from the requirement to investigate on the silver surface enrichment of objects of historical and artistic interest using the X-ray fluorescence non-destructive technique (XRF). The aim is the thickness estimation through the experimental relationship between K-alpha/K-beta and K-alpha/L-alpha of Ag as a function of the thickness. Measurements on silver sheets of different thicknesses and three concentrations are carried out using a XRF spectrometer with a maximum voltage of 50 kV. The results allow to analyse the plating layer of silver objects also to make other interesting considerations
    • …
    corecore