5 research outputs found

    The Reactivity and Stability of Polyoxometalate Water Oxidation Electrocatalysts

    Get PDF
    This review describes major advances in the use of functionalized molecular metal oxides (polyoxometalates, POMs) as water oxidation catalysts under electrochemical conditions. The fundamentals of POM-based water oxidation are described, together with a brief overview of general approaches to designing POM water oxidation catalysts. Next, the use of POMs for homogeneous, solution-phasewater oxidation is described togetherwith a summary of theoretical studies shedding light on the POM-WOC mechanism. This is followed by a discussion of heterogenization of POMs on electrically conductive substrates for technologically more relevant application studies. The stability of POM water oxidation catalysts is discussed, using select examples where detailed data is already available. The review finishes with an outlook on future perspectives and emerging themes in electrocatalytic polyoxometalate-based water oxidation research

    The Reactivity and Stability of Polyoxometalate Water Oxidation Electrocatalysts

    No full text
    This review describes major advances in the use of functionalized molecular metal oxides (polyoxometalates, POMs) as water oxidation catalysts under electrochemical conditions. The fundamentals of POM-based water oxidation are described, together with a brief overview of general approaches to designing POM water oxidation catalysts. Next, the use of POMs for homogeneous, solution-phase water oxidation is described together with a summary of theoretical studies shedding light on the POM-WOC mechanism. This is followed by a discussion of heterogenization of POMs on electrically conductive substrates for technologically more relevant application studies. The stability of POM water oxidation catalysts is discussed, using select examples where detailed data is already available. The review finishes with an outlook on future perspectives and emerging themes in electrocatalytic polyoxometalate-based water oxidation research

    How to Organize a Photocatalysis Conference Online (on a Budget)

    No full text
    Originally planned as an on-site meeting, the inaugural CataLight Young Scientist Symposium (CYSS) took place as a fully online conference in November 2020. Dedicated to various aspects of photocatalysis, namely synthesis, theory, characterization, and application, CYSS aimed to provide a stage for early-career scientists to connect to each other and present their research to peers in the field. While still keeping a traditional on-site conference format including both plenary and poster sessions, several minor and major changes had to be applied to the format to deliver a full experience. In this report, we highlight key steps in the organization of such an online conference, laying a focus on using mostly open source software to minimize costs, and discuss differences to both on-site and other online conference formats.<br /

    Activation by oxidation and ligand exchange in a molecular manganese vanadium oxide water oxidation catalyst

    No full text
    Despite their technological importance, reaction mechanisms of most water oxidation catalysts (WOCs) are poorly understood. We combine theoretical and experimental methods to reveal mechanistic insights into the reactivity of the highly active molecular WOC [Mn4V4O17(OAc)3]3-. Using density functional theory, electrochemistry and IR-spectroscopy, we propose a three-step activation mechanism: one-electron oxidation [Mn3+2Mn4+2]→[Mn3+Mn4+3], acetate-to-water ligand exchange, and another one-electron oxidation [Mn3+Mn4+3]→[Mn4+4]. Analysis of ligand exchange pathways shows that nucleophilic attack of water molecules along the Jahn-Teller axis of Mn3+ centers leads to lower activation barriers than attack at Mn4+ centers. Deprotonation of one water ligand by the leaving acetate group leads to formation of the activated species [Mn4V4O17(OAc)2(H2O)(OH)]1-. Computed Redox potentials are in excellent agreement with electrochemical measurements. This interplay between redox chemistry and ligand exchange controls the formation of the catalytically active species. These results provide key reactivity information essential to further study bio-inspired molecular WOCs and solid-state manganese oxide catalysts
    corecore