929 research outputs found
Towards Grower-friendly Apple Crop Thinning by Tree Shading
Light management with shading nets, which reduce sunlight by 74%, might be an
alternative to chemicals commonly used for thinning on apple trees. To study the effect of
shading on crop load and fruit quality, trials were conducted in field experiments with the
cultivars Golden Delicious and Elstar in 2006. Trees were either covered 25 days after full
bloom (DAFB) with a net during three days, or until the peak of fruit fall, observed after
seven days shading. Ideal time length for optimal crop yield was seven days shading for
Elstar and three days shading for Golden Delicious. Alternate bearing could be decreased
as flower initiation counts the following year showed. In both experiments, inner quality of
fruit such as sugar and firmness showed good values at optimal shading duration
compared with chemical + hand thinning. In 2007, a second field trial was conducted with
cultivars Golden Delicious and Topaz to study the time period for shading in further detail.
Shading was done for three days at 19, 26 and 33 DAFB using two net types (three- and
two-meter-net width, covering the trees entirely or only down to 50 cm above ground). For
Golden Delicious, shading after 19 and 26 days reduced fruits per 100 flower cluster to the
same extent as with chemical + hand thinning. There was no difference between the two
net types. For Topaz, shading after 19 days showed the best results. Regarding inner
quality of both cultivars, only sugar content for Golden Delicious could be significantly
improved after 19 and 26 days shading. Further analyses are still under way (e.g. for
acidity).
This study is part of an effort for increasing European consumption with fruit from
sustainable production systems, the ISAFRUIT-EU-project
Optical control of coherent interactions between quantum dot electron spins
Coherent interactions between spins in quantum dots are a key requirement for
quantum gates. We have performed pump-probe experiments in which pulsed lasers
emitting at different photon energies manipulate two distinct subsets of
electron spins within an inhomogeneous InGaAs quantum dot ensemble. The spin
dynamics are monitored through their precession about an external magnetic
field. These measurements demonstrate spin precession phase shifts and
modulations of the magnitude of one subset of oriented spins after optical
orientation of the second subset. The observations are consistent with results
from a model using a Heisenberg-like interaction with microeV-strength.Comment: 5 pages, 4 figure
Biological Control of Sheep Parasites using Duddingtonia flagrans: Trials on Commercial Farms in Sweden
Trials were conducted on 3 commercial sheep farms in Sweden to assess the effect of administering spores of the nematode trapping fungus, Duddingtonia flagrans, together with supplementary feed to lactating ewes for the first 6 weeks from turn-out on pastures in spring. Also control groups of ewes, receiving only feed supplement, were established on all 3 farms. Groups were monitored by intensive parasitological investigation. The ewes and their lambs were moved in late June to saved pastures for summer grazing, the lambs receiving an anthelmintic treatment at this time. After approximately 6 weeks on summer pasture the lambs were weaned, treated a second time with anthelmintic, and returned to their original lambing pastures for finishing. Decisions as to when lambs were to be marketed were entirely at the discretion of the farmer co-operators. No difference in lamb performance was found between the two treatments on all three farms. This was attributed to the high levels of nutrition initially of the ewes limiting their post-partum rise in nematode faecal egg counts in spring, which in turn resulted in low levels of nematode infection on pastures throughout the autumn period. Additionally, pastures were of good quality for the lambs during the finishing period, so they grew at optimal rates as far as the farmers were concerned
Effect of pump-probe detuning on the Faraday rotation and ellipticity signals of mode-locked spins in InGaAs quantum dots
We have studied the Faraday rotation and ellipticity signals in ensembles of
singly-charged (In,Ga)As/GaAs quantum dots by pump-probe spectroscopy. For
degenerate pump and probe we observe that the Faraday rotation signal amplitude
first grows with increasing the time separation between pump and probe before a
decay is observed for large temporal separations. The temporal behavior of the
ellipticity signal, on the other hand, is regular: its amplitude decays with
the separation. By contrast, for detuned pump and probe the Faraday rotation
and ellipticty signals both exhibit similar and conventional behavior. The
experimental results are well described in the frame of a recently developed
microscopic theory [Phys. Rev. B 80, 104436 (2009)]. The comparison between
calculations and experimental data allows us to provide insight into the
spectral dependence of the electron spin precession frequencies and extract the
electron g-factor dependence on energy.Comment: 9 pages, 7 figure
Correlated errors in Hipparcos parallaxes towards the Pleiades and the Hyades
We show that the errors in the Hipparcos parallaxes towards the Pleiades and
the Hyades open clusters are spatially correlated over angular scales of 2 to 3
deg, with an amplitude of up to 2 mas. This correlation is stronger than
expected based on the analysis of the Hipparcos catalog. We predict the
parallaxes of individual cluster members, pi_pm, from their Hipparcos proper
motions, assuming that all cluster members have the same space velocity. We
compare pi_pm with their Hipparcos parallaxes, pi_Hip, and find that there are
significant spatial correlations in pi_Hip. We derive a distance modulus to the
Pleiades of 5.58 +- 0.18 mag using the radial-velocity gradient method. This
value, agrees very well with the distance modulus of 5.60 +- 0.04 mag
determined using the main-sequence fitting technique, compared with the value
of 5.33 +- 0.06 inferred from the average of the Hipparcos parallaxes of the
Pleiades members. We show that the difference between the main-sequence fitting
distance and the Hipparcos parallax distance can arise from spatially
correlated errors in the Hipparcos parallaxes of individual Pleiades members.
Although the Hipparcos parallax errors towards the Hyades are spatially
correlated in a manner similar to those of the Pleiades, the center of the
Hyades is located on a node of this spatial structure. Therefore, the parallax
errors cancel out when the average distance is estimated, leading to a mean
Hyades distance modulus that agrees with the pre-Hipparcos value. We speculate
that these spatial correlations are also responsible for the discrepant
distances that are inferred using the mean Hipparcos parallaxes to some open
clusters. Finally, we note that our conclusions are based on a purely geometric
method and do not rely on any models of stellar isochrones.Comment: 33 pages including 10 Figures, revised version accepted for
publication in Ap
Electrode Polarization Effects in Broadband Dielectric Spectroscopy
In the present work, we provide broadband dielectric spectra showing strong
electrode polarization effects for various materials, belonging to very
different material classes. This includes both ionic and electronic conductors
as, e.g., salt solutions, ionic liquids, human blood, and
colossal-dielectric-constant materials. These data are intended to provide a
broad data base enabling a critical test of the validity of phenomenological
and microscopic models for electrode polarization. In the present work, the
results are analyzed using a simple phenomenological equivalent-circuit
description, involving a distributed parallel RC circuit element for the
modeling of the weakly conducting regions close to the electrodes. Excellent
fits of the experimental data are achieved in this way, demonstrating the
universal applicability of this approach. In the investigated ionically
conducting materials, we find the universal appearance of a second dispersion
region due to electrode polarization, which is only revealed if measuring down
to sufficiently low frequencies. This indicates the presence of a second
charge-transport process in ionic conductors with blocking electrodes.Comment: 9 pages, 6 figures, experimental data are provided in electronic form
(see "Data Conservancy"
Brown dwarfs in the Hyades and beyond?
We have used both the Low-Resolution Imaging Spectrograph and the HIRES
echelle spectrograph on the Keck telescopes to obtain spectra of twelve
candidate members of the Hyades cluster identified by Leggett and Hawkins
(1988, 1989). All of the objects are chromospherically-active, late-type
M-dwarfs, with H equivalent widths varying from 1 to 30\AA. Based on
our measured radial velocities, the level of stellar activity and other
spectroscopic features, only one of the twelve stars has properties consistent
with cluster membership. We consider how this result affects estimates of the
luminosity and mass function of the Hyades cluster. Five of the eleven field
stars have weak K I 7665/7699\AA and CaH absorption as compared with M-dwarf
standards of the same spectral type, suggesting a lower surface gravity. Two of
these sources, LH0416+14 and LH0419+15, exhibit significant lithium 6708 \AA
absorption. Based partly on parallax measurements by the US Naval Observatory
(Harris et al, 1998), we identify all five as likely to be young, pre-main
sequence objects in or near the Taurus-Auriga association at distances of
between 150 and 250 parsecs. A comparison with theoretical models of pre-main
sequence stars indicates masses of less than 0.05 M.Comment: to appear in AJ, January 1999; 34 pages, (Latex format), including 10
embedded postscript figures and two table
The Large Quasar Reference Frame (LQRF) - an optical representation of the ICRS
The large number and all-sky distribution of quasars from different surveys,
along with their presence in large, deep astrometric catalogs,enables the
building of an optical materialization of the ICRS following its defining
principles. Namely: that it is kinematically non-rotating with respect to the
ensemble of distant extragalactic objects; aligned with the mean equator and
dynamical equinox of J2000; and realized by a list of adopted coordinates of
extragalatic sources. Starting from the updated and presumably complete LQAC
list of QSOs, the initial optical positions of those quasars are found in the
USNO B1.0 and GSC2.3 catalogs, and from the SDSS DR5. The initial positions are
next placed onto UCAC2-based reference frames, following by an alignment with
the ICRF, to which were added the most precise sources from the VLBA calibrator
list and the VLA calibrator list - when reliable optical counterparts exist.
Finally, the LQRF axes are inspected through spherical harmonics, contemplating
to define right ascension, declination and magnitude terms. The LQRF contains
J2000 referred equatorial coordinates for 100,165 quasars, well represented
across the sky, from -83.5 to +88.5 degrees in declination, and with 10 arcmin
being the average distance between adjacent elements. The global alignment with
the ICRF is 1.5 mas, and the individual position accuracies are represented by
a Poisson distribution that peaks at 139 mas in right ascension and 130 mas in
declination. It is complemented by redshift and photometry information from the
LQAC. The LQRF is designed to be an astrometric frame, but it is also the basis
for the GAIA mission initial quasars' list, and can be used as a test bench for
quasars' space distribution and luminosity function studies.Comment: 23 pages, 23 figures, 6 tables Accepted for publication by Astronomy
& Astrophysics, on 25 May 200
The 10 Meter South Pole Telescope
The South Pole Telescope (SPT) is a 10 m diameter, wide-field, offset
Gregorian telescope with a 966-pixel, multi-color, millimeter-wave, bolometer
camera. It is located at the Amundsen-Scott South Pole station in Antarctica.
The design of the SPT emphasizes careful control of spillover and scattering,
to minimize noise and false signals due to ground pickup. The key initial
project is a large-area survey at wavelengths of 3, 2 and 1.3 mm, to detect
clusters of galaxies via the Sunyaev-Zeldovich effect and to measure the
small-scale angular power spectrum of the cosmic microwave background (CMB).
The data will be used to characterize the primordial matter power spectrum and
to place constraints on the equation of state of dark energy. A
second-generation camera will measure the polarization of the CMB, potentially
leading to constraints on the neutrino mass and the energy scale of inflation.Comment: 47 pages, 14 figures, updated to match version to be published in
PASP 123 903 (May, 2011
Collaboration scripts - a conceptual analysis
This article presents a conceptual analysis of collaboration scripts used in face-to-face and computer-mediated collaborative learning. Collaboration scripts are scaffolds that aim to improve collaboration through structuring the interactive processes between two or more learning partners. Collaboration scripts consist of at least five components: (a) learning objectives, (b) type of activities, (c) sequencing, (d) role distribution, and (e) type of representation. These components serve as a basis for comparing prototypical collaboration script approaches for face-to-face vs. computer-mediated learning. As our analysis reveals, collaboration scripts for face-to-face learning often focus on supporting collaborators in engaging in activities that are specifically related to individual knowledge acquisition. Scripts for computer-mediated collaboration are typically concerned with facilitating communicative-coordinative processes that occur among group members. The two lines of research can be consolidated to facilitate the design of collaboration scripts, which both support participation and coordination, as well as induce learning activities closely related to individual knowledge acquisition and metacognition. In addition, research on collaboration scripts needs to consider the learnersâ internal collaboration scripts as a further determinant of collaboration behavior. The article closes with the presentation of a conceptual framework incorporating both external and internal collaboration scripts
- âŠ