333 research outputs found
Advanced resistivity model for arbitrary magnetization orientation applied to a series of compressive- to tensile-strained (Ga,Mn)As layers
The longitudinal and transverse resistivities of differently strained
(Ga,Mn)As layers are theoretically and experimentally studied as a function of
the magnetization orientation. The strain in the series of (Ga,Mn)As layers is
gradually varied from compressive to tensile using (In,Ga)As templates with
different In concentrations. Analytical expressions for the resistivities are
derived from a series expansion of the resistivity tensor with respect to the
direction cosines of the magnetization. In order to quantitatively model the
experimental data, terms up to the fourth order have to be included. The
expressions derived are generally valid for any single-crystalline cubic and
tetragonal ferromagnet and apply to arbitrary surface orientations and current
directions. The model phenomenologically incorporates the longitudinal and
transverse anisotropic magnetoresistance as well as the anomalous Hall effect.
The resistivity parameters obtained from a comparison between experiment and
theory are found to systematically vary with the strain in the layer.Comment: 14 pages, 11 figures, submitted to Phys. Rev.
Modelling the unfolding pathway of biomolecules: theoretical approach and experimental prospect
We analyse the unfolding pathway of biomolecules comprising several
independent modules in pulling experiments. In a recently proposed model, a
critical velocity has been predicted, such that for pulling speeds
it is the module at the pulled end that opens first, whereas for
it is the weakest. Here, we introduce a variant of the model that is
closer to the experimental setup, and discuss the robustness of the emergence
of the critical velocity and of its dependence on the model parameters. We also
propose a possible experiment to test the theoretical predictions of the model,
which seems feasible with state-of-art molecular engineering techniques.Comment: Accepted contribution for the Springer Book "Coupled Mathematical
Models for Physical and Biological Nanoscale Systems and Their Applications"
(proceedings of the BIRS CMM16 Workshop held in Banff, Canada, August 2016),
16 pages, 6 figure
Biogenesis of the mitochondrial phosphate carrier
The mitochondrial phosphate carrier (PiC) is a member of the family of inner-membrane carrier proteins which are generally synthesized without a cleavable presequence. Surprisingly, the cDNA sequences of bovine and rat PiC suggested the existence of an amino-terminal extension sequence in the precursor of PiC. By expressing PiC in vitro, we found that PiC is indeed synthesized as a larger precursor. This precursor was imported and proteolytically processed by mitochondria, whereby the correct amino-terminus of the mature protein was generated. Import of PiC showed the characteristics of mitochondrial protein uptake, such as dependence on ATP and a membrane potential and involvement of contact sites between mitochondrial outer and inner membranes. The precursor imported in vitro was correctly assembled into the functional form, demonstrating that the authentic import and assembly pathway of PiC was reconstituted when starting with the presequence-carrying precursor. These results are discussed in connection with the recently postulated role of PiC as an import receptor located in the outer membrane
Climate change and mountain water resources: overview and recommendations for research, management and policy
Mountains are essential sources of freshwater for our world, but their role in global water resources could well be significantly altered by climate change. How well do we understand these potential changes today, and what are implications for water resources management, climate change adaptation, and evolving water policy? To answer above questions, we have examined 11 case study regions with the goal of providing a global overview, identifying research gaps and formulating recommendations for research, management and policy. <br><br> After setting the scene regarding water stress, water management capacity and scientific capacity in our case study regions, we examine the state of knowledge in water resources from a highland-lowland viewpoint, focusing on mountain areas on the one hand and the adjacent lowland areas on the other hand. Based on this review, research priorities are identified, including precipitation, snow water equivalent, soil parameters, evapotranspiration and sublimation, groundwater as well as enhanced warming and feedback mechanisms. In addition, the importance of environmental monitoring at high altitudes is highlighted. We then make recommendations how advancements in the management of mountain water resources under climate change could be achieved in the fields of research, water resources management and policy as well as through better interaction between these fields. <br><br> We conclude that effective management of mountain water resources urgently requires more detailed regional studies and more reliable scenario projections, and that research on mountain water resources must become more integrative by linking relevant disciplines. In addition, the knowledge exchange between managers and researchers must be improved and oriented towards long-term continuous interaction
Biogenesis of mitochondrial porin
We review here the present knowledge about the pathway of import and assembly of porin into mitochondria and compare it to those of other mitochondrial proteins. Porin, like all outer mitochondrial membrane proteins studied so far is made as a precursor without a cleavble lsquosignalrsquo sequence; thus targeting information must reside in the mature sequence. At least part of this information appears to be located at the amino-terminal end of the molecule. Transport into mitochondria can occur post-translationally. In a first step, the porin precursor is specifically recognized on the mitochondrial surface by a protease sensitive receptor. In a second step, porin precursor inserts partially into the outer membrane. This step is mediated by a component of the import machinery common to the import pathways of precursor proteins destined for other mitochondrial subcompartments. Finally, porin is assembled to produce the functional oligomeric form of an integral membrane protein wich is characterized by its extreme protease resistance
How does reputation win trust? A customer-based mediation analysis
This study investigates the relationship between customer-based corporate reputation (CBR) and customer trust, in particular, the mediating role of customer perceived risk in this relationship. We propose and test a model comprising of four components: cognitive CBR, affective CBR, customer perceived risk, and customer trust using a sample of 156 customers from the fast-food services industry in Pakistan. The results suggest that the cognitive and affective dimensions of CBR behave differently in developing customer trust. Affective CBR has a direct positive relationship with customer trust; whereas, customer perceived risk and affective CBR mediate the relationship between cognitive CBR and customer trust. Implications for future researchers and practicetioners are proposed based on the study results
- …