1,165 research outputs found
Recommended from our members
Crossover morita equivalences for blocks of the covering groups of the symmetric and alternating groups
Optimizing local protocols implementing nonlocal quantum gates
We present a method of optimizing recently designed protocols for
implementing an arbitrary nonlocal unitary gate acting on a bipartite system.
These protocols use only local operations and classical communication with the
assistance of entanglement, and are deterministic while also being "one-shot",
in that they use only one copy of an entangled resource state. The optimization
is in the sense of minimizing the amount of entanglement used, and it is often
the case that less entanglement is needed than with an alternative protocol
using two-way teleportation.Comment: 11 pages, 1 figure. This is a companion paper to arXiv:1001.546
Conformal approach to cylindrical DLA
We extend the conformal mapping approach elaborated for the radial Diffusion
Limited Aggregation model (DLA) to the cylindrical geometry. We introduce in
particular a complex function which allows to grow a cylindrical cluster using
as intermediate step a radial aggregate. The grown aggregate exhibits the same
self-affine features of the original cylindrical DLA. The specific choice of
the transformation allows us to study the relationship between the radial and
the cylindrical geometry. In particular the cylindrical aggregate can be seen
as a radial aggregate with particles of size increasing with the radius. On the
other hand the radial aggregate can be seen as a cylindrical aggregate with
particles of size decreasing with the height. This framework, which shifts the
point of view from the geometry to the size of the particles, can open the way
to more quantitative studies on the relationship between radial and cylindrical
DLA.Comment: 16 pages, 8 figure
Fermionic representations for characters of M(3,t), M(4,5), M(5,6) and M(6,7) minimal models and related Rogers-Ramanujan type and dilogarithm identities
Characters and linear combinations of characters that admit a fermionic sum
representation as well as a factorized form are considered for some minimal
Virasoro models. As a consequence, various Rogers-Ramanujan type identities are
obtained. Dilogarithm identities producing corresponding effective central
charges and secondary effective central charges are derived. Several ways of
constructing more general fermionic representations are discussed.Comment: 14 pages, LaTex; minor correction
Impact of Salvage Surgery and Re-irradiation for Radiation Failed Recurrent Skull Base Meningiomas
View full abstracthttps://openworks.mdanderson.org/leading-edge/1052/thumbnail.jp
Obstructing extensions of the functor Spec to noncommutative rings
In this paper we study contravariant functors from the category of rings to
the category of sets whose restriction to the full subcategory of commutative
rings is isomorphic to the prime spectrum functor Spec. The main result reveals
a common characteristic of these functors: every such functor assigns the empty
set to M_n(C) for n >= 3. The proof relies, in part, on the Kochen-Specker
Theorem of quantum mechanics. The analogous result for noncommutative
extensions of the Gelfand spectrum functor for C*-algebras is also proved.Comment: 23 pages. To appear in Israel J. Math. Title was changed;
introduction was rewritten; old Section 2 was removed to streamline the
exposition; final section was rewritten to omit an error in the earlier proof
of Theorem 1.
Recurrence for discrete time unitary evolutions
We consider quantum dynamical systems specified by a unitary operator U and
an initial state vector \phi. In each step the unitary is followed by a
projective measurement checking whether the system has returned to the initial
state. We call the system recurrent if this eventually happens with probability
one. We show that recurrence is equivalent to the absence of an absolutely
continuous part from the spectral measure of U with respect to \phi. We also
show that in the recurrent case the expected first return time is an integer or
infinite, for which we give a topological interpretation. A key role in our
theory is played by the first arrival amplitudes, which turn out to be the
(complex conjugated) Taylor coefficients of the Schur function of the spectral
measure. On the one hand, this provides a direct dynamical interpretation of
these coefficients; on the other hand it links our definition of first return
times to a large body of mathematical literature.Comment: 27 pages, 5 figures, typos correcte
Covariant Quantum Fields on Noncommutative Spacetimes
A spinless covariant field on Minkowski spacetime \M^{d+1} obeys the
relation where
is an element of the Poincar\'e group \Pg and is its unitary representation on quantum vector states. It
expresses the fact that Poincar\'e transformations are being unitary
implemented. It has a classical analogy where field covariance shows that
Poincar\'e transformations are canonically implemented. Covariance is
self-reproducing: products of covariant fields are covariant. We recall these
properties and use them to formulate the notion of covariant quantum fields on
noncommutative spacetimes. In this way all our earlier results on dressing,
statistics, etc. for Moyal spacetimes are derived transparently. For the Voros
algebra, covariance and the *-operation are in conflict so that there are no
covariant Voros fields compatible with *, a result we found earlier. The notion
of Drinfel'd twist underlying much of the preceding discussion is extended to
discrete abelian and nonabelian groups such as the mapping class groups of
topological geons. For twists involving nonabelian groups the emergent
spacetimes are nonassociative.Comment: 20 page
Education and Training for Scientific and Technological Library and Information Work
ERAF:A2.P11This report has been produced by the Postgraduate School of Librarianship and Information Science of Sheffield University under a contract from the Office for Scientific and Technical Information of the Department of Education and Science. The purpose of the contract was to allow a study to be made in depth of the form and contents of education and training required for work in scientific and technological libraries and information departments.
The views and findings expressed in the report are, of course, those of the investigators and the Department can accept no responsibility for them. However, it IS felt that the contents will be of considerable value to those responsible for devising curricula for education in special librarianship and information work
- …