27 research outputs found
Proteome dynamics and early salt stress response of the photosynthetic organism Chlamydomonas reinhardtii
BACKGROUND: The cellular proteome and metabolome are underlying dynamic regulation allowing rapid adaptation to changes in the environment. System-wide analysis of these dynamics will provide novel insights into mechanisms of stress adaptation for higher photosynthetic organisms. We applied pulsed-SILAC labeling to a photosynthetic organism for the first time and we established a method to study proteome dynamics in the green alga chlamydomonas reinhardtii, an emerging model system for plant biology. In addition, we combined the analysis of protein synthesis with metabolic profiling to study the dynamic changes of metabolism and proteome turnover under salt stress conditions. RESULTS: To study de novo protein synthesis an arginine auxotroph Chlamydomonas strain was cultivated in presence of stable isotope-labeled arginine for 24 hours. From the time course experiment in 3 salt concentrations we could identify more than 2500 proteins and their H/L ratio in at least one experimental condition; for 998 proteins at least 3 ratio counts were detected in the 24 h time point (0 mM NaCl). After fractionation we could identify 3115 proteins and for 1765 of them we determined their de novo synthesis rate. Consistently with previous findings we showed that RuBisCO is among the most prominent proteins in the cell; and similar abundance and turnover for the small and large RuBisCO subunit could be calculated. The D1 protein was identified among proteins with a high synthesis rates. A global median half-life of 45 h was calculated for Chlamydomonas proteins under the chosen conditions. CONCLUSION: To investigate the temporal co-regulation of the proteome and metabolome, we applied salt stress to chlamydomonas and studied the time dependent regulation of protein expression and changes in the metabolome. The main metabolic response to salt stress was observed within the amino acid metabolism. In particular, proline was up-regulated manifold and according to that an increased carbon flow within the proline biosynthetic pathway could be measured. In parallel the analysis of abundance and de novo synthesis of the corresponding enzymes revealed that metabolic rearrangements precede adjustments of protein abundance
Ecological Complex Systems
Main aim of this topical issue is to report recent advances in noisy
nonequilibrium processes useful to describe the dynamics of ecological systems
and to address the mechanisms of spatio-temporal pattern formation in ecology
both from the experimental and theoretical points of view. This is in order to
understand the dynamical behaviour of ecological complex systems through the
interplay between nonlinearity, noise, random and periodic environmental
interactions. Discovering the microscopic rules and the local interactions
which lead to the emergence of specific global patterns or global dynamical
behaviour and the noises role in the nonlinear dynamics is an important, key
aspect to understand and then to model ecological complex systems.Comment: 13 pages, Editorial of a topical issue on Ecological Complex System
to appear in EPJ B, Vol. 65 (2008
A molecular rheostat adjusts auxin flux to promote root protophloem differentiation.
Auxin influences plant development through several distinct concentration-dependent effects <sup>1</sup> . In the Arabidopsis root tip, polar auxin transport by PIN-FORMED (PIN) proteins creates a local auxin accumulation that is required for the maintenance of the stem-cell niche <sup>2-4</sup> . Proximally, stem-cell daughter cells divide repeatedly before they eventually differentiate. This developmental gradient is accompanied by a gradual decrease in auxin levels as cells divide, and subsequently by a gradual increase as the cells differentiate <sup>5,6</sup> . However, the timing of differentiation is not uniform across cell files. For instance, developing protophloem sieve elements (PPSEs) differentiate as neighbouring cells still divide. Here we show that PPSE differentiation involves local steepening of the post-meristematic auxin gradient. BREVIS RADIX (BRX) and PROTEIN KINASE ASSOCIATED WITH BRX (PAX) are interacting plasma-membrane-associated, polarly localized proteins that co-localize with PIN proteins at the rootward end of developing PPSEs. Both brx and pax mutants display impaired PPSE differentiation. Similar to other AGC-family kinases, PAX activates PIN-mediated auxin efflux, whereas BRX strongly dampens this stimulation. Efficient BRX plasma-membrane localization depends on PAX, but auxin negatively regulates BRX plasma-membrane association and promotes PAX activity. Thus, our data support a model in which BRX and PAX are elements of a molecular rheostat that modulates auxin flux through developing PPSEs, thereby timing PPSE differentiation