28 research outputs found

    Strangeness nuclear physics: a critical review on selected topics

    Get PDF
    Selected topics in strangeness nuclear physics are critically reviewed. This includes production, structure and weak decay of Λ\Lambda--Hypernuclei, the Kˉ\bar K nuclear interaction and the possible existence of Kˉ\bar K bound states in nuclei. Perspectives for future studies on these issues are also outlined.Comment: 63 pages, 51 figures, accepted for publication on European Physical Journal

    Low frequency view of GRB 190114C reveals time varying shock micro-physics

    Get PDF
    We present radio and optical afterglow observations of the TeV-bright long gamma-ray burst 190114C at a redshift of z = 0.425, which was detected by the Major Atmospheric Gamma Imaging Cherenkov telescope. Our observations with Atacama Large Millimeter/submillitmeter Array, Australia Telescope Compact Array, and upgraded Giant Metre-wave Radio Telescope were obtained by our low frequency observing campaign and range from ∼1 to ∼140 d after the burst and the optical observations were done with three optical telescopes spanning up to ∼25 d after the burst. Long-term radio/mm observations reveal the complex nature of the afterglow, which does not follow the spectral and temporal closure relations expected from the standard afterglow model. We find that the microphysical parameters of the external forward shock, representing the share of shock-created energy in the non-thermal electron population and magnetic field, are evolving with time. The inferred kinetic energy in the blast-wave depends strongly on the assumed ambient medium density profile, with a constant density medium demanding almost an order of magnitude higher energy than in the prompt emission, while a stellar wind-driven medium requires approximately the same amount energy as in prompt emission

    Estimates of protection levels against SARS-CoV-2 infection and severe COVID-19 in Germany before the 2022/2023 winter season: the IMMUNEBRIDGE project

    Get PDF
    PURPOSE: Despite the need to generate valid and reliable estimates of protection levels against SARS-CoV-2 infection and severe course of COVID-19 for the German population in summer 2022, there was a lack of systematically collected population-based data allowing for the assessment of the protection level in real time. METHODS: In the IMMUNEBRIDGE project, we harmonised data and biosamples for nine population-/hospital-based studies (total number of participants n = 33,637) to provide estimates for protection levels against SARS-CoV-2 infection and severe COVID-19 between June and November 2022. Based on evidence synthesis, we formed a combined endpoint of protection levels based on the number of self-reported infections/vaccinations in combination with nucleocapsid/spike antibody responses ("confirmed exposures"). Four confirmed exposures represented the highest protection level, and no exposure represented the lowest. RESULTS: Most participants were seropositive against the spike antigen; 37% of the participants ≥ 79 years had less than four confirmed exposures (highest level of protection) and 5% less than three. In the subgroup of participants with comorbidities, 46-56% had less than four confirmed exposures. We found major heterogeneity across federal states, with 4-28% of participants having less than three confirmed exposures. CONCLUSION: Using serological analyses, literature synthesis and infection dynamics during the survey period, we observed moderate to high levels of protection against severe COVID-19, whereas the protection against SARS-CoV-2 infection was low across all age groups. We found relevant protection gaps in the oldest age group and amongst individuals with comorbidities, indicating a need for additional protective measures in these groups

    Selective protection by hsp 70 against cytotoxic drug-, but not Fas-induced T-cell apoptosis

    No full text
    The phenomenon of heat-shock (HS) protection to many cytotoxic insults has previously been described; however, the specific molecular mechanism underlying this HS-mediated protection remains undefined. To gain insight into this protective mechanism, heat-shocked Jurkat T cells were treated with a range of cytotoxic agents. Those against which HS conferred protection (camptothecin and actinomycin D) were compared with agents against which HS showed no protective effect (anti-Fas monoclonal antibody (mAb)). Reactive oxygen species (ROS) production was found to be an event common to apoptosis induced by camptothecin and actinomycin D, whereas Fas-mediated apoptosis was shown to occur via a ROS-independent mechanism. The selective protection observed against these agents was found to be mimicked by pretreatment with antioxidant compounds. Furthermore, this antioxidant protection appears to be occurring downstream of ROS production. Experiments were extended using heat-shock protein (hsp) 70 gene-transfected Jurkat T cells to confirm that the protective effects observed were caused by hsp 70 synthesis rather than any other cellular response to HS. Bcl-2 expression levels were also examined to determine whether any correlation existed between Bcl-2- and hsp 70-mediated protection

    Treating Cancer by Spindle Assembly Checkpoint Abrogation Discovery of Two Clinical Candidates, BAY 1161909 and BAY 1217389, Targeting MPS1 Kinase

    No full text
    Inhibition of monopolar spindle 1 MPS1 kinase represents a novel approach to cancer treatment instead of arresting the cell cycle in tumor cells, cells are driven into mitosis irrespective of DNA damage and unattached misattached chromosomes, resulting in aneuploidy and cell death. Starting points for our optimization efforts with the goal to identify MPS1 inhibitors were two HTS hits from the distinct chemical series triazolopyridines and imidazopyrazines . The major initial issue of the triazolopyridine series was the moderate potency of the HTS hits. The imidazopyrazine series displayed more than 10 fold higher potencies; however, in the early project phase, this series suffered from poor metabolic stability. Here, we outline the evolution of the two hit series to clinical candidates BAY 1161909 and BAY 1217389 and reveal how both clinical candidates bind to the ATP site of MPS1 kinase, while addressing different pockets utilizing different binding interactions, along with their synthesis and preclinical characterization in selected in vivo efficacy model
    corecore