86 research outputs found

    Soils of the Knox Creek Plain East Kimberley Western Australia and Northern Territory

    Get PDF
    An assessment of the soils and landforms of approximately 12,000 ha in the Knox Creek Plain in Western Australia and the Northern Territory was conducted in May and June 1994. Seventeen map units were identified and their soils, landform and vegetation characteristics were described. Grey or brown cracking clays predominate on the plain, however variable red or brown soils on the coarser alluvium of remnant levees are common in the south and south-east

    Soils of the Ivanhoe West Bank East Kimberley Western Australia

    Get PDF
    A brief assessment of the soils of 2,064 ha of land on the Ivanhoe West Bank and their suitability for irrigated agriculture was conducted in May-June 1994. Sandy or loamy soils occur on broad levees adjacent to the Ord River, and areas of \u27black soil\u27 and \u27red soil\u27 plains occur behind these levees. Some areas of the red soil plain and levees are deeply dissected, and occasional active erosion is evident

    Soils of the Mantinea Loop Ord River Valley East Kimberley Western Australia

    Get PDF
    A brief assessment of the soils of 1,186 hectares in the Mantinea Loop, and their suitability for irrigated agriculture, was conducted in June 1994. Four map units based on soil, landform and vegetation were identified. The soils are mainly calcareous brown fine sandy loams. The landform is an alluvial plain, with numerous small depressions and channels caused by the meandering and flooding of the Ord River

    RNase A Inhibits Formation of Neutrophil Extracellular Traps in Subarachnoid Hemorrhage

    Get PDF
    Background: Subarachnoid hemorrhage (SAH) caused by rupture of an intracranial aneurysm, is a life-threatening emergency that is associated with substantial morbidity and mortality. Emerging evidence suggests involvement of the innate immune response in secondary brain injury, and a potential role of neutrophil extracellular traps (NETs) for SAH-associated neuroinflammation. In this study, we investigated the spatiotemporal patterns of NETs in SAH and the potential role of the RNase A (the bovine equivalent to human RNase 1) application on NET burden. Methods: A total number of n=81 male C57Bl/6 mice were operated utilizing a filament perforation model to induce SAH, and Sham operation was performed for the corresponding control groups. To confirm the bleeding and exclude stroke and intracerebral hemorrhage, the animals received MRI after 24h. Mice were treated with intravenous injection of RNase A (42 mu g/kg body weight) or saline solution for the control groups, respectively. Quadruple-immunofluorescence (IF) staining for cell nuclei (DAPI), F-actin (phalloidin), citrullinated H3, and neurons (NeuN) was analyzed by confocal imaging and used to quantify NET abundance in the subarachnoid space (SAS) and brain parenchyma. To quantify NETs in human SAH patients, cerebrospinal spinal fluid (CSF) and blood samples from day 1, 2, 7, and 14 after bleeding onset were analyzed for double-stranded DNA (dsDNA) via Sytox Green. Results: Neutrophil extracellular traps are released upon subarachnoid hemorrhage in the SAS on the ipsilateral bleeding site 24h after ictus. Over time, NETs showed progressive increase in the parenchyma on both ipsi- and contralateral site, peaking on day 14 in periventricular localization. In CSF and blood samples of patients with aneurysmal SAH, NETs also increased gradually over time with a peak on day 7. RNase application significantly reduced NET accumulation in basal, cortical, and periventricular areas. Conclusion: Neutrophil extracellular trap formation following SAH originates in the ipsilateral SAS of the bleeding site and spreads gradually over time to basal, cortical, and periventricular areas in the parenchyma within 14days. Intravenous RNase application abrogates NET burden significantly in the brain parenchyma, underpinning a potential role in modulation of the innate immune activation after SAH

    Crop Updates 2001 - Pulses

    Get PDF
    This session covers sixty six papers from different authors: 1. Pulse Industry Highlights 2. CONTRIBUTORS 3. BACKGROUND 4. SUMMARY OF PREVIOUS RESULTS 2000 REGIONAL ROUNDUP 5. Northern agricultural Region, M. Harries, W. O’Neill, Agriculture Western Australia 6. Central Agricultural Region, R. French, Agriculture Western Australia 7. Great Southern and Lakes,N. Brandon, N. Runciman and S. White,Agriculture Western Australia 8. Esperance, M. Seymour, Agriculture Western Australia PULSE PRODUCTION AGRONOMY AND GENETIC IMPROVEMENT Faba bean: 9. germplasm evaluation, 10. Variety evaluation, 11. Sowing rate and time of sowing, Variation in root morphology, P. White and T. Pope, Agriculture Western Australia Desi chickpea: 12. Breeding highlights, 13. Variety evaluation, 14. Seed discolouration, C. Veitch, Agriculture Western Australia, 15. Performance under drought stress, J. Berger, N.C. Turner, CLIMA and CSIRO Plant Industry , K.H.M. Siddique, Agriculture Western Australia & CLIMA, 16. Resistance to chilling at flowering and to budworm, H. Clarke, CLIMA, 17. Effect of row spacing, sowing rate and orientation on growth and seed yield, G. Riethmuller, W. MacLeod, Agriculture Western Australia Kabuli chickpea, 18. variety and germplasm evaluation, 19. Premium quality kabuli chickpea development in the ORIA, 20. International screening for ascochyta blight resistance, 21. Evaluation of ascochyta resistant germplasm in Australia Field pea 22. Breeding highlights, 23. Variety evaluation, 24. Agronomic and varietal effects on seed quality, R. French, J. Millar and T.N. Khan, Agriculture Western Australia, 25. Seed yield and quality in the Great Southern, N. Brandon, R. Beermier, N. Brown and S. White,Agriculture Western Australia, 26. Herbicide tolerance of new varieties and lines, Esperance region, M. Seymour,Agriculture Western Australia, 27. Mullewa, H. Dhammu and T. Piper, D. Nicholson, M. D\u27Antuono, Agriculture Western Australia 28. Herbicide tolerance of Cooke on marginal soil, H. Dhammu and T. Piper, D.Nicholson, M. D\u27Antuono, Agriculture Western Australia, 29. Post emergent weed control using Raptor® Lentil 30. Variety evaluation 31. Evaluation of advanced breeding lines from CIPAL 32. Elite germplasm from ICARDA and ACIAR project, K. Regan,Agriculture Western Australia, J. Clements and K.H.M. Siddique, Agriculture Western Australia and CLIMA, C. Francis CLIMA 33. Single row evaluation of F3/F4 breeding lines, K. Regan,Agriculture Western Australia, J. Clements, Agriculture Western Australia and CLIMA Vetch 34. Germplasm evaluation 35. Time of sowing x fungicide, M. Seymour, Agriculture Western Australia 36. Tolerance to post emergent application of Sniper® M. Seymour, Agriculture Western Australia 37. Herbicide tolerance Narbon bean 38. Germplasm evaluation, M. Seymour, Agriculture Western Australia 39. Herbicide tolerance, M. Seymour, Agriculture Western Australia 40. Post emergent use of knockdown herbicides, M. Seymour, Agriculture Western Australia Albus lupin 41. Time of sowing, N. Brandon and R. Beermier, Agriculture Western Australia Lathyrus development 42. Field evaluation, C. Hanbury and K.H.M. Siddique, CLIMA and Agriculture Western Australia 43. Animal feeding trials, C. Hanbury and K.H.M. Siddique, Agriculture Western Australia, C. White, CSIRO, B. Mullan, Agriculture Western Australia, B. Hughes, SARDI, South Australia Species comparison 44. Time of sowing 45. Seed moisture of pulse species at harvest, G.P. Riethmuller and R.J. French Agriculture Western Australia 46.Rotational benefits of pulses on grey clay soils, N. Brandon, R. Beermier, R. Bowie, J. Warburton, Agriculture Western Australia P. Fisher, NRE, Victoria, M. Braimbridge, UWA Centre for Land Rehabilitation , F. Hoyle and W. Bowden, Agriculture Western Australia 47. Pulse species response to phosphorus and zinc, S. Lawrence, Z. Rengel, UWA, S.P. Loss, CSBP futurefarm M.D.A. Bolland, K.H.M. Siddique, W. Bowden, R. Brennan, Agriculture Western Australia 48. The effect of soil applied lime and lime pelleting on pulses, M. Seymour, Agriculture Western Australia 49. Antitranspirants 50. Mapping soils for pulses in the Great Southern, N. Brandon, P. Tille, N. Schoknecht, Agriculture Western Australia DEMONSTRATION OF PULSES IN THE FARMING SYSTEM 51. New field pea and faba bean varieties in the Great Southern 52. Harvesting methods for field pea in the Great Southern, N. Brandon, R. Beermier, M. Seymour, Agriculture Western Australia DISEASE AND PEST MANAGEMENT 53.Ascochyta blight of chickpea 54. Seed dressing and sowing depth 55. Foliar fungicide sprays 56. The ascochyta management package for 2001 57. Initiation ascochyta disease from infected stubble, J. Galloway and W. MacLeod, Agriculture Western Australia 58. Black spot of field pea 59. Ascochyta blight of chickpea 60. Ascochyta blight of faba bean 61. Pulse disease diagnostics, D. Wright and N. Burges Agriculture Western Australia Viruses in pulses 62. Virus infection causes seed discolouration and poor seed quality R. Jones and L. Latham, Agriculture Western Australia Insect pests 63. Aphid ecology in pulses, O. Edwards, J. Ridsdill-Smith and R. Horbury, CSIRO Entomology 64. Evaluation of transgenic field pea against pea weevils (Bruchus pisorum), Ms M.J. de Sousa Majer, Curtin University of Technology; N.C. Turner, CSIRO Plant Industry and D. Hardie, Agriculture Western Australia 65. Searching for markers for resistance to pea weevil, O. Byrne, CLIMA and Plant Sciences, UWA, N. Galwey, Plant Sciences, UWA, D. Hardie,Agriculture Western Australia and P. Smith, Botany, UWA 66. Improved stored grain fumigation on-farm with Phoscard®, R. Emery and E. Kostas, Agriculture Western Australia ACKNOWLEDGEMENTS PUBLICATIONS BY PULSE PRODUCTIVITY PROJECT STAFF VARIETIES PRODUCED AND COMMERCIALLY RELEASE

    Stimulation of the Sphenopalatine Ganglion Induces Reperfusion and Blood-Brain Barrier Protection in the Photothrombotic Stroke Model

    Get PDF
    The treatment of stroke remains a challenge. Animal studies showing that electrical stimulation of the sphenopalatine ganglion (SPG) exerts beneficial effects in the treatment of stroke have led to the initiation of clinical studies. However, the detailed effects of SPG stimulation on the injured brain are not known.The effect of acute SPG stimulation was studied by direct vascular imaging, fluorescent angiography and laser Doppler flowmetry in the sensory motor cortex of the anaesthetized rat. Focal cerebral ischemia was induced by the rose bengal (RB) photothrombosis method. In chronic experiments, SPG stimulation, starting 15 min or 24 h after photothrombosis, was given for 3 h per day on four consecutive days. Structural damage was assessed using histological and immunohistochemical methods. Cortical functions were assessed by quantitative analysis of epidural electro-corticographic (ECoG) activity continuously recorded in behaving animals.Stimulation induced intensity- and duration-dependent vasodilation and increased cerebral blood flow in both healthy and photothrombotic brains. In SPG-stimulated rats both blood brain-barrier (BBB) opening, pathological brain activity and lesion volume were attenuated compared to untreated stroke animals, with no apparent difference in the glial response surrounding the necrotic lesion.SPG-stimulation in rats induces vasodilation of cortical arterioles, partial reperfusion of the ischemic lesion, and normalization of brain functions with reduced BBB dysfunction and stroke volume. These findings support the potential therapeutic effect of SPG stimulation in focal cerebral ischemia even when applied 24 h after stroke onset and thus may extend the therapeutic window of currently administered stroke medications

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd

    Soils of the Ivanhoe West Bank East Kimberley Western Australia

    No full text
    A brief assessment of the soils of 2,064 ha of land on the Ivanhoe West Bank and their suitability for irrigated agriculture was conducted in May-June 1994. Sandy or loamy soils occur on broad levees adjacent to the Ord River, and areas of \u27black soil\u27 and \u27red soil\u27 plains occur behind these levees. Some areas of the red soil plain and levees are deeply dissected, and occasional active erosion is evident
    corecore