132 research outputs found
Reduced bacterial adhesion to fibrinogen-coated substrates via nitric oxide release
The ability of nitric oxide (NO)-releasing xerogels to reduce fibrinogen-mediated adhesion of Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli is described. A negative correlation was observed between NO surface flux and bacterial adhesion for each species tested. For S. aureus and E. coli, reduced adhesion correlated directly with NO flux from 0 to 30 pmol cm−2 s−1. A similar dependence for S. epidermidis was evident from 18 to 30 pmol cm−2 s−1. At a NO flux of 30 pmol cm−2 s−1, surface coverage of S. aureus, S. epidermidis, and E. coli was reduced by 96, 48, and 88%, respectively, compared to non-NO-releasing controls. Polymeric NO release was thus demonstrated to be an effective approach for significantly reducing fibrinogen-mediated adhesion of both gram-positive and gram-negative bacteria in vitro, thereby illustrating the advantage of active NO release as a strategy for inhibiting bacterial adhesion in the presence of pre-adsorbed protein
Functionalized Mesoporous Silica via an Aminosilane Surfactant Ion Exchange Reaction: Controlled Scaffold Design and Nitric Oxide Release
Nitric oxide-releasing mesoporous silica nanoparticles (MSNs) were prepared using an aminosilane-template surfactant ion exchange reaction. Initially, bare silica particles were synthesized under basic conditions in the presence of cetyltrimethylammonium bromide (CTAB). These particles were functionalized with nitric oxide (NO) donor precursors (i.e., secondary amines) via the addition of aminosilane directly to the particle sol and a commensurate ion exchange reaction between the cationic aminosilanes and CTAB. N-Diazeniumdiolate NO donors were formed at the secondary amines to yield NO-releasing MSNs. Tuning of the ion exchange-based MSN modification approach allowed for the preparation of monodisperse particles ranging from 30 to 1100 nm. Regardless of size, the MSNs stored appreciable levels of NO (0.4–1.5 μmol mg–1) with tunable NO release durations (1–33 h) dependent on the aminosilane modification. Independent control of NO release properties and particle size was achieved, demonstrating the flexibility of this novel MSN synthesis over conventional co-condensation and surface grafting strategies
Disruption and eradication of P. aeruginosa biofilms using nitric oxide-releasing chitosan oligosaccharides
Biofilm disruption and eradication were investigated as a function of nitric oxide- (NO) releasing chitosan oligosaccharide dose with results compared to control (ie non-NO-releasing) chitosan oligosaccharides and tobramycin. Quantification of biofilm expansion/contraction and multiple-particle tracking microrheology were used to assess the structural integrity of the biofilm before and after antibacterial treatment. While tobramycin had no effect on the physical properties of the biofilm, NO-releasing chitosan oligosaccharides exhibited dose-dependent behavior with biofilm degradation. Control chitosan oligosaccharides increased biofilm elasticity, indicating that the scaffold may mitigate the biofilm disrupting power of nitric oxide somewhat. The results from this study indicate that nitric oxide-releasing chitosan oligosaccharides act as dual-action therapeutics capable of eradicating and physically disrupting P. aeruginosa biofilms
The effect of nitric oxide surface flux on the foreign body response to subcutaneous implants
Although the release of nitric oxide (NO) from biomaterials has been shown to reduce the foreign body response (FBR), the optimal NO release kinetics and doses remain unknown. Herein, polyurethane-coated wire substrates with varying NO release properties were implanted into porcine subcutaneous tissue for 3, 7, 21 and 42 d. Histological analysis revealed that materials with short NO release durations (i.e., 24 h) were insufficient to reduce the collagen capsule thickness at 3 and 6 weeks, whereas implants with longer release durations (i.e., 3 and 14 d) and greater NO payloads significantly reduced the collagen encapsulation at both 3 and 6 weeks. The acute inflammatory response was mitigated most notably by systems with the longest duration and greatest dose of NO release, supporting the notion that these properties are most critical in circumventing the FBR for subcutaneous biomedical applications (e.g., glucose sensors)
Increase of SERS Signal Upon Heating or Exposure to a High-Intensity Laser Field: Benzenethiol on an AgFON Substrate
The surface-enhanced Raman scattering (SERS) signal from an AgFON plasmonic
substrate, recoated with benzenethiol, was observed to increase by about 100%
upon heating for 3.5 min at 100C and 1.5 min at 125C. The signal intensity was
found to increase further by about 80% upon a 10 sec exposure to a
high-intensity (3.2 kW/cm^2) 785-nm cw laser, corresponding to 40 mW in a
40+/-5-um diameter spot. The observed increase in the SERS signal may be
understood by considering the presence of benzenethiol molecules in an
intermediate or 'precursor' state in addition to conventionally ordered
molecules forming a self-assembled monolayer. The increase in the SERS signal
arises from the conversion of the molecules in the precursor state to the
chemisorbed state due to thermal and photo-thermal effects.Comment: 9 pages, 4 figures; J. Phys. Chem. C, accepte
Challenges and practices in promoting (ageing) employees working career in the health care sector – case studies from Germany, Finland and the UK
Background
The health and social care sector (HCS) is currently facing multiple challenges across Europe: against the background of ageing societies, more people are in need of care. Simultaneously, several countries report a lack of skilled personnel. Due to its structural characteristics, including a high share of part-time workers, an ageing workforce, and challenging working conditions, the HCS requires measures and strategies to deal with these challenges.
Methods
This qualitative study analyses if and how organisations in three countries (Germany, Finland, and the UK) report similar challenges and how they support longer working careers in the HCS. Therefore, we conducted multiple case studies in care organisations. Altogether 54 semi-structured interviews with employees and representatives of management were carried out and analysed thematically.
Results
Analysis of the interviews revealed that there are similar challenges reported across the countries. Multiple organisational measures and strategies to improve the work ability and working life participation of (ageing) workers were identified. We identified similar challenges across our cases but different strategies in responding to them. With respect to the organisational measures, our results showed that the studied organisations did not implement any age-specific management strategies but realised different reactive and proactive human relation measures aiming at maintaining and improving employees’ work ability (i.e., health, competence and motivation) and longer working careers.
Conclusions
Organisations within the HCS tend to focus on the recruitment of younger workers and/or migrant workers to address the current lack of skilled personnel. The idea of explicitly focusing on ageing workers and the concept of age management as a possible solution seems to lack awareness and/or popularity among organisations in the sector. The concept of age management offers a broad range of measures, which could be beneficial for both, employees and employers/organisations. Employees could benefit from a better occupational well-being and more meaningful careers, while employers could benefit from more committed employees with enhanced productivity, work ability and possibly a longer career
Nitric Oxide-Releasing Electrospun Polymer Microfibers
The preparation of electrospun polymer microfibers with nitric oxide (NO)-release capabilities is described. Polymer solutions containing disodium 1-[2-(carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate (PROLI/NO), a low molecular weight NO donor, were electrospun to generate fibers ranging from 100–3000 nm in diameter capable of releasing NO upon immersion in aqueous solutions under physiological conditions (pH 7.4, 37 °C), with kinetics depending on polymer composition and fiber diameter. The NO release half-life for PROLI/NO-doped electrospun fibers was 2–200 times longer than that of PROLI/NO alone. The influence of polymer concentration, applied voltage, capillary diameter, solution conductivity, flow rate, and additives on fiber properties are reported and discussed with respect to potential applications
Increased in vivo glucose recovery via nitric oxide release.
The in vivo glucose recovery of subcutaneously implanted nitric oxide (NO)-releasing microdialysis probes was evaluated in a rat model using saturated NO solutions to steadily release NO. Such methodology resulted in a constant NO flux of 162 pmol cm(-2) s(-1) from the probe membrane over 8 h of perfusion daily. The in vivo effects of enhanced localized NO were evaluated by monitoring glucose recovery over a 14 day period, with histological analysis thereafter. A difference in glucose recovery was observed starting at 7 days for probes releasing NO relative to controls. Histological analysis at 14 days revealed lessened inflammatory cell density at the probe surface and decreased capsule thickness. Collectively, the results suggest that intermittent sustained NO release from implant surfaces may improve glucose diffusion for subcutaneously implanted sensors by mitigating the foreign body reaction
- …