204 research outputs found
Electric Field Induced Emission as a Diagnostic Tool for Measurement of Local Electric Field Strengths
The phenomenon of electric field induced (EFI) emission is examined in several diatomic and polyatomic molecules. The possibility of using this phenomenon as a diagnostic tool to measure, nonintrusively, the strength and direction of local electric fields in plasmas is discussed. An estimate of the EFI signal emitted in a typical application plasma is given. This yields a lower bound on the detector sensitivity necessary to exploit EFI emission in practical applications. It is concluded that, at present, the EFI signal could be measured by some very sensitive infrared detection schemes available. Current progress in infrared detector technology, if maintained, could result in the possibility of utilizing EFI emission on a more routine basis. This would allow measurement of electric fields in plasmas of species that are not suitable candidates for any of the other currently available schemes which measure such fields
Mechanism for Membrane Electroporation Irreversibility Under High-Intensity, Ultrashort Electrical Pulse Conditions
An improved electroporation model is used to address membrane irreversibility under ultrashort electric pulse conditions. It is shown that membranes can survive a strong electric pulse and recover provided the pore distribution has a relatively large spread. If, however, the population consists predominantly of larger radii pores, then irreversibility can result. Physically, such a distribution could arise if pores at adjacent sites coalesce. The requirement of close proximity among the pore sites is more easily satisfied in smaller organelles than in outer cell membranes. Model predictions are in keeping with recent observations of cell damage to intracellular organelles (e.g., mitochondria), without irreversible shock at the outer membranes, by a nanosecond, high-intensity electric pulse. This mechanism also explains the greater damage from multiple electric shocks
Electroporation Dynamics in Biological Cells Subjected to Ultrafast Electrical Pulses: A Numerical Simulation Study
A model analysis of electroporation dynamics in biological cells has been carried out based on the Smoluchowski equation. Results of the cellular response to short, electric pulses are presented, taking account of the growth and resealing dynamics of transient aqueous pores. It is shown that the application of large voltages alone may not be sufficient to cause irreversible breakdown, if the time duration is too short. Failure to cause irreversible damage at small pulse widths could be attributed to the time inadequacy for pores to grow and expand beyond a critical threshold radius. In agreement with earlier studies, it is shown that irreversible breakdown would lead to the formation of a few large pores, while a large number of smaller pores would appear in the case of reversible breakdown. Finally, a pulse width dependence of the applied voltage for irreversible breakdown has been obtained. It is shown that in the absence of dissipation, the associated energy input necessary reduces with decreasing pulse width to a limiting value. However, with circuit effects taken into account, a local minima in the pulse dependent energy function is predicted, in keeping with previously published experimental reports
Paschen\u27s Law for a Hollow Cathode Discharge
An expression for the breakdown voltage of a oneādimensional hollow cathode discharge has been derived. The breakdown condition which corresponds to Paschenās law contains, in addition to the first Townsend coefficient, and the secondary electron emission coefficient two parameters which characterize the reflecting action of the electric field and the lifetime of the electrons in the discharge. The breakdown voltage for a hollow cathode discharge in helium was calculated and compared to that of a glow discharge operating under similar conditions
Impact of Field-Dependent Electronic Trapping Across Coulomb Repulsive Potentials on Low Frequency Charge Oscillations
We have performed Monte Carlo simulations to obtain the field dependence of electronic trapping across repulsive potentials in GaAs. Such repulsive centers are associated with deep level impurities having multiply charged states. Our results reveal a fieldādependent maxima in the electronic capture coefficient, and the overall shape is seen to depend on the background electron density due to the effects of screening. Based on the Monte Carlo calculations, we have examined the stability of compensated semiconductors containing such repulsive centers. Our analysis indicates a potential for low frequency charge oscillations which is in keeping with available experimental data
Xenon Excimer Emission From Pulsed Microhollow Cathode Discharges
By applying electrical pulses of 20 ns duration to xenon microplasmas, generated by direct current microhollow cathode discharges, we were able to increase the xenon excimer emission by more than an order of magnitude over direct current discharge excimer emission. For pulsed voltages in excess of 500 V, the optical power at 172 nm was found to increase exponentially with voltage. Largest values obtained were 2.75 W of vacuum-ultraviolet optical power emitted from a single microhollow cathode discharge in 400 Torr xenon with a 750 V pulse applied to a discharge. Highest radiative emittance was 15.2 W/cm2. The efficiency for excimer emission was found to increase linearly with pulsed voltages above 500 V reaching values of 20% at 750 V
Simulations of Nanopore Formation and Phosphatidylserine Externalization in Lipid Membranes Subjected to a High-Intensity, Ultrashort Electric Pulse
A combined MD simulator and time dependent Laplace solver are used to analyze the electrically driven phosphatidylserine externalization process in cells. Time dependent details of nanopore formation at cell membranes in response to a high-intensity (100kVācm), ultrashort (10ns) electric pulse are also probed. Our results show that nanosized pores could typically be formed within about 5ns. These predictions are in very good agreement with recent experimental data. It is also demonstrated that defect formation and PS externalization in membranes should begin on the anode side. Finally, the simulations confirm that PS externalization is a nanopore facilitated event, rather than the result of molecular translocation across the trans-membrane energy barrier
Resonant Energy Transfer From Argon Dimers to Atomic Oxygen in Microhollow Cathode Discharges
The emission of atomic oxygen lines at 130.2 and 130.5 nm from a microhollow cathode discharge in argon with oxygen added indicates resonant energy transfer from argon dimers to oxygen atoms. The internal efficiency of the vacuum-ultraviolet (VUV) radiation was measured as 0.7% for a discharge in 1100 Torr argon with 0.1% oxygen added. The direct current VUV point source operates at voltages below 300 V and at current levels of milliamperes
Improved Energy Model for Membrane Electroporation in Biological Cells Subjected to Electrical Pulses
A self-consistent model analysis of electroporation in biological cells has been carried out based on an improved energy model. The simple energy model used in the literature is somewhat incorrect and unphysical for a variety of reasons. Our model for the pore formation energy E(r) includes a dependence on pore population and density. It also allows for variable surface tension, incorporates the effects of finite conductivity on the electrostatic correction term, and is dynamic in nature. Self-consistent calculations, based on a coupled scheme involving the Smoluchowski equation and the improved energy model, are presented. It is shown that E(r) becomes self-adjusting with variations in its magnitude and profile, in response to pore population, and inhibits uncontrolled pore growth and expansion. This theory can be augmented to include pore-pore interactions to move beyond the independent pore picture
- ā¦