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Electroporation dynamics in biological cells subjected to ultrafast electrical pulses:
A numerical simulation study

R. P. Joshi and K. H. Schoenbach
Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529-0246

~Received 11 November 1999!

A model analysis of electroporation dynamics in biological cells has been carried out based on the Smolu-
chowski equation. Results of the cellular response to short, electric pulses are presented, taking account of the
growth and resealing dynamics of transient aqueous pores. It is shown that the application of large voltages
alone may not be sufficient to cause irreversible breakdown, if the time duration is too short. Failure to cause
irreversible damage at small pulse widths could be attributed to the time inadequacy for pores to grow and
expand beyond a critical threshold radius. In agreement with earlier studies, it is shown that irreversible
breakdown would lead to the formation of a few large pores, while a large number of smaller pores would
appear in the case of reversible breakdown. Finally, a pulse width dependence of the applied voltage for
irreversible breakdown has been obtained. It is shown that in the absence of dissipation, the associated energy
input necessary reduces with decreasing pulse width to a limiting value. However, with circuit effects taken
into account, a local minima in the pulse dependent energy function is predicted, in keeping with previously
published experimental reports.

PACS number~s!: 87.15.Aa, 87.50.Rr, 87.17.Aa

I. INTRODUCTION

Electroporation is a well known physical process in bio-
logical cells@1–3#. It involves rapid structural rearrangement
of the membrane in response to an externally applied electric
field. The most prominent observable effect is a rapid in-
crease in the electrical conductivity by several orders of
magnitude@4#. This is attributed to the formation of aqueous
pathways or pores in the lipid bilayer of the membrane that
facilitate conduction. The opening of such channels~or more
appropriately, transient aqueous pores!, also enables the
transport of ions and water soluble species both into and out
of individual cells. Electroporation can, therefore, be used to
initiate large molecular fluxes for the purposes of introducing
genetic material into cells and manipulating cells and tissues.
Numerous related applications in molecular biology, biotech-
nology, and medicine are beginning to emerge@5–9#.

Electroporation has also been linked to the nonthermal
killing of micro-organisms subjected to strong electric fields
@10#. For this reason, it offers great potential for decontami-
nation and the elimination of harmful micro-organisms and
biohazards. Traditionally, most electroporation studies have
focused on relatively low external voltages applied over ex-
tended time periods ranging from several tens of microsec-
onds to milliseconds@11#. In a very recent development,
work focused on the use of much shorter, high-voltage
pulses for initiating electroporation. Electric fields as high as
100 kV/cm were used with pulse durations ranging from
nanoseconds to several microseconds. Related field tests on
biofouling preventation have also successfully been reported
@12,13#. The shift to short electric pulses is guided in part by
the development of pulsed power technology. There also ap-
pear to be several fundamental advantages to using short
electric pulses for cellular manipulation. First, negligible
thermal heating of the biological matter can be expected to
occur due to the short time duration. Also, much lower en-
ergies are required for pulsed inputs, and yet large values of
the electric fields and peak powers can be obtained. Since the

biological response depends on the magnitude of the applied
signal voltage, much more dramatic results can be achieved.
The large applied fields would ensure that the quantitative
thresholds for almost all of the internal biological mecha-
nisms were adequately exceeded. Consequently, the overall
system efficiency is expected to be superior. Next, pulsed
fields afford a way by which the time scales can easily be
manipulated. This can be used to an advantage by selectively
focusing on a desired set of internal processes. For example,
by turning off the applied fields relatively quickly, the slower
processes~for example, biochemical events! could effec-
tively be inhibited. In theory@14#, the time constants for
processes ongoing at the membrane, those within the
nucleus, and mechanisms occurring within the cell bulk are
all expected to be quite different. Hence this scheme appears
to offer selective tunability through alterations in the applied
pulse width. From the frequency domain standpoint, the
magnitude and comparison of the frequency components as-
sociated with the forcing function can be made smaller or
larger with respect to the internal cellular response times
depending on the desired outcome.

The above suggests that electrical pulsed power technol-
ogy can be an important tool for successfully manipulating
the response of biological cells and neutralizing biohazards.
Since the application of such high power electric pulses to
biological systems is relatively new, not much work has been
carried out. In order to fully utilize its potential and optimize
the effects, it is quite important to first gain a good under-
standing of the internal dynamics and electroporation phys-
ics. Unfortunately, the precise mechanism of pore formation
is not fully understood, though substantial progress has been
made over the years. The transient aqueous pore theory sug-
gests a combined role of thermal fluctuations and local elec-
tric fields across the membrane@15,16#. Litster @17# and
Taupinet al. @18# were the first to suggest the role of thermal
fluctuations in pore formation. Based on the shape changes
necessary, he demonstrated the existence of a threshold pore
formation energy. This threshold was associated with the
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creation of an edge and elimination of a portion of the sur-
face area. The formation energy depended on the operating
temperature. The model was subsequently extended to in-
clude electrostatic energy effects@19# and underscored the
role of the transmembrane potentialU(r ,t). Geometric con-
siderations in spherical cells suggest that this potential
should predominantly develop over the regions of the two
polar caps. Recent fluorescent measurement data@20# has
borne this out.

Much of the theoretical work on electroporation has fo-
cused on the kinetics and mechanisms for pore formation
@7,21–23#. However, the process of pore resealing after the
termination of an electric pulse is equally important for prac-
tical applications. For instance, this process would control
the time duration and amounts of ionic fluid exchanges be-
tween cells and external agents. The health of the cells and
the likelihood of irreversible breakdown would also be influ-
enced by the pore closing ability. For pulsed power applica-
tions, it becomes important to establish a quantitative con-
nection between pore resealing~i.e., reversible breakdown!
and the pulse characteristics. Qualitative trends suggest that
irreversible breakdown tends to occur for long pulses or if
the applied voltage is large. The precise relationship or
mechanism, however, is not fully understood. A develop-
ment of precise, theoretically based models would help in a
proper selection of the pulse characteristics. The only theo-
retical simulation of resealing, to the best of our knowledge,
was based on a kinetic model that treated pore closure as a
one-step random process@24#. However, that treatment ap-
pears to invoke a number of approximations that can be
called into question. For instance, the use of a Poisson ran-
dom process is only valid provided that the events are truly
independent. In actual practice, this condition is difficult to
meet due to the ongoing pore interactions and the possibility
for them to coalesce@25#. This is expected to become an
especially important issue for high power pulses since the
applied electric fields will be substantially stronger, and so
should lead to the formation of a high density of pores clus-
tered over the polar regions of each cell. Furthermore, the
use of fixed, energy-independent resealing rates as in@24# is
known to be an oversimplification. Self-consistent calcula-
tions of the membrane voltage are also warranted for ad-
equately modeling the high power electroporation experi-
ments.

In this contribution, a time-dependent numerical model
based on the Smoluchowski equation@26,27# is used to
simulate the pore kinetics. This equation yields the probabil-
ity density functionn(r ,t), which denotes the number of
pores per unit area having radii betweenr and r 1dr at any
time instantt. The continuous creation and destruction of
pores is included, and the model keeps track of the dynami-
cal evolution in their size. The growth, expansion, and re-
sealing of pores is controlled by drift and diffusion inr
space, and influenced by the magnitude of the transmem-
brane potential. This makes it necessary to incorporate the
temporal variation of the cell potential. Here an equivalent
circuit representation has been used for the cell to determine
the transmembrane potential. Most previous studies, with the
exception of a short report by Vaughan and Weaver@28#,
have ignored equivalent circuit aspects. As a result, the ki-
netic rates become time dependent, and the evolution of the

biological system not only depends on the initial starting
state, but also on details of the voltage wave form sequence.
In short, a memory effect is naturally included in the simu-
lation approach. Our results show that irreversible break-
down can occur if the largest pores have grown to a radii
larger than a threshold value of about 20 nm by the end of
the voltage pulse. It is also shown that low amplitude, long-
duration electric pulses lead to the formation of a large num-
ber of small pores. These typically tend to have small radii,
and will reseal upon the termination of the external field.
Increases in conductance of the cell membrane, accompany-
ing the growth in their size work to dramatically reduce the
transmembrane voltage. The decay or ‘‘discharge time con-
stant’’ is also lowered, and leads to a rapid collapse of the
membrane voltage upon the termination of the applied volt-
age. Larger voltages, on the other hand, lead to a small num-
ber of large pores that continue to expand even in the ab-
sence of a cell potential. This suggests that high-voltage,
short electric pulses could ultimately be quite efficient for the
destruction of specific cells and organisms.

II. SIMULATION MODEL

In keeping with the literature@29–31#, it is assumed here
that two types of pores exist. The hydrophilic pores have
their walls lined with water attracting heads of lipid mol-
ecules, and are conducting. These are relevant to the elec-
troporation phenomena and lead to the large conductivity
increases measured experimentally. Hydrophobic pores are
nonconducting, and simply represent gaps in the lipid bilayer
of the membrane. Each of the two pore types is characterized
by an energyE(r ), which is a function of the pore radiusr.
In the present analysis, we have chosen to use a specific form
for the pore energy in keeping with a formulation that is
perhaps widely accepted and commonly used in the literature
@4,19,29,32#. In this formulation,E(r ) represents the free
energy change associated with the formation of a pore and
has contributions from three factors. The surface tension of
the membrane, line tension of the pore edge, and membrane
capacitance collectively determineE(r ). Due to the contri-
bution from the membrane capacitance,E(r ) acquires a de-
pendence on the transmembrane potentialV(t). In the pres-
ence of a transmembrane potentialV(t), this energy function
is given as@4,19,29,32#

E~r ,t !52phrs~`!@ I 1~r /r 0!/I 0~r /r 0!2papV2r 2,
~1a!

E~r ,t !52pgr 2psr 21~C/r !22papV2r 2, ~1b!

for hydrophobic and hydrophilic pores, respectively. In the
above equationsI 1 and I 0 are the modified Bessel functions
of the zeroth and first order, respectively,h is the membrane
thickness,s(`) is a constant equal to 531022 N m21,
while r 0 represents a characteristic length scale over which
the properties of water change between the interface and the
bulk. The value ofr 0 is taken to equal 1 nm. Also,g is the
energy per unit length of the pore perimeter, whiles is the
energy per unit area of the intact membrane. Typical values
for the above parameters are given in Table I. The third term
in Eq. ~1b! represents the steric repulsion between lipid
heads lining the pores@3,30#, and is responsible for the in-
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crease in pore free energy with shrinking radius. The value
of C in Eq. ~1b! was chosen to be 9.67310215 J1/4m in
keeping with the reports by Neu and Krassowska@30# as it
yields values close to those measured by Glaseret al. @32#.
The last term in Eq.~1b! represents the capacitive contribu-
tion to the energy in the presence of a transmembrane poten-
tial V. The coefficientap is a property of the membrane and
its aqueous environment. In the simples continuum approxi-
mation@32#, it is expressed in terms of the membrane thick-
nessh and the permittivitiesew and em of water and the
membrane, respectively, asap5(ew5em)/@2h#. Values of
these various parameters are relatively well known, and have
been given in Table I.

It might be mentioned that other models have been pro-
posed as well that take into account different factors in the
pore energy calculation. For instance, formulations based on
the role of osmotic pressure@18#, electrocompression of the
lipid bilayer @33#, interaction with membrane cytoskeleton
@34#, and more recently cellular deformation@35# exist.
While the expression forE(r ) would change somewhat on
the basis of the alternative theories, the basic trends and
qualitative physical behavior would remain unaltered. A
careful comparative analysis of the various formulations will
be carried out elsewhere. Also, the surface tension has been
assumed to be a constant in the present treatment. In practice,
s value can change depending on the osmotic pressure, or
with perforation in a finite membrane upon stretching. For
example, a simple heuristic model has recently been used to
describe such changes@35#, and an electrostatic treatment
has also been proposed@36#. The primary effect of such
variations ins, as shown in Ref.@35#, would be the creation
of an additional local minima in the pore energy function.
The value of the pore radius corresponding to this minima
would be larger than that corresponding to the unstable
minima. The net change from the standpoint of electropora-
tion would be that instead of expanding continually beyond
the unstable maxima, the pores would become quite large
and ultimately stabilize at this high radial value. In principle

though, the possibility of creating cell membranes with very
large pores potentially leading to cell destruction over time
would remain. Hence most consequences and the qualitative
reasoning presented here would hold despite the assumption
of a fixeds parameter.

The energy functionE(r ) is important to the pore dynam-
ics for several reasons. First, it determines the ‘‘drift flux’’
for pores in r space, and therefore governs the growth or
contraction of pores at any given radius ‘‘r .’’ A positive
E(r ) slope signifies a driving force toward a smaller radius,
while a negative slope forces the growth and expansion of
pores inr space. This makes the gradient ofE(r ) an impor-
tant parameter in the Smoluchowski equation for the pore
kinetics. Second, theE(r ) profile contains local maxima and
minima in r space, which are dependent on the applied volt-
age. In general, the presence of a membrane voltage reduces
the maxima, and can even quell the energy barrier com-
pletely beyond a critical voltage value. In the latter situation,
pores would tend to grow without bound, and lead to cell
rupture. Not only is the presence or absence of a confining
barrier potential dependent on theE(r ) profile, but the drift
velocity in r space is also controlled by the shape ofE(r ).
This is particularly relevant to transient voltage pulses, since
stability depends upon whether the pores are able to drift
past the barriermaxima within the duration of the applied
voltage pulse. Finally, the energyE(r ) dictates the rate of
formation of new pores as a function ofr.

As in previous treatments, it is assumed here that the for-
mation of pores is a two-step process. All pores are initially
created as hydrophobic/nonconducting at a rateS(r ) per unit
area of the membrane, during every time intervaldt. This
rate is given as

S~r !5$~nch!/~kBT!%@dE~r !/dr#exp@2E~r !/~kBT!#dr dt,
~2!

wherenc is an attempted rate density@19#, E(r ) is the energy
for hydrophobic pores,T is the operating temperature, andkB
is the Boltzmann constant. This assumes that the use of a
kinetic collisional theory remains valid for nongaseous
phases as well. This is easily justified given that kinetic,
collisional approaches~and Langevin equations to include
memory effects! have been used for a variety of problems in
condensed matter physics@37,38#. If a conducting pore is
created with a radiusr .r * , it spontaneously changes its
configuration and transforms into a conducting, hydrophilic
pore. All conducting pores then survive as long as their radii
remain larger thanr * . Destruction of a conducting pore oc-
curs only if it drifts or diffuses inr space to a value below
r * . Due to the exponential term in Eq.~2!, most pores are
created with very small radii. It is only under the influence of
a suitably slopedE(r ) curve, such as that resulting from an
applied voltage, that the created pores would begin to drift
and diffuse toward higher radii.

The Smoluchowski equation that governs the pore dy-
namics is given in terms of the pore density distribution
function n(r ,t) as

]n~r ,t !/]t2$D/kBT#%@]E~r !/]r #2D]2n~r ,t !/]r 25S~r !,
~3!

TABLE I. Parameters used for the theoretical model.

Parameter Source Value

D (m2 s21) Ref. @22# 5310214

g (J m21) Ref. @22# 1.8310211

s (J m22) Ref. @22# 1023

C (J1/4 m ) Ref. @33# 9.67310215

Kw (F m21) Ref. @22# 8038.85310212

Km (F m21) Ref. @22# 238.85310212

h (m) Ref. @35# 531029

ap (F m22) Ref. @33# 6.931022

nc (m23 s1) Ref. @19# 231038

nd (s21) Ref. @35# 1011

r 0 (m) Ref. @35# 131029

s0 (N m21) Ref. @35# 531022

RM0 (V) Ref. @22# 13108

RC (V) Ref. @40# 1.253104

RL (V) Ref. @40# 50
CM (nF) Ref.@22# 9.6
CS (nF) Ref.@41# 0.02
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whereS(r ) is the source term as given in Eq.~2!, while D is
the pore diffusion constant given in Table I. The Smolu-
chowski approach was originally used in the treatment of
Brownian motion@27#, in which the fluid molecules are in a
state of constant flux. The process of diffusion represents a
‘‘random walk’’ of the pore radius inr space. Physically,
this is brought about by fluctuations in the radius in response
to water molecules and other species constantly entering and
leaving the pores. The total number of poresN(t) is easily
expressed in terms of the probability density functionn(r ,t)
as N(t)5*0

`n(r ,t)dr. Similarly, the average pore radius
^r (t)& at any time instant can be expressed as^r (t)&
5@*0

`rn(r ,t)dr#/@*0
`n(r ,t)dr#.

Numerical simulations of the dynamic pore distribution
were carried out here by implementing a time-domain, finite
difference discretization of the governing Smoluchowski
equation. An upperboundr max of 50 Å was set on the pore
radius, and this entirer space was uniformly divided into
1000 segments to yield a constant grid spacingdr of 0.05 Å.
This choice of the boundary on ther space was guided by
two factors. First, the set limit had to be much larger than the
critical radiusr c at which the energy functionE(r ) has a
local maxima. This ensured that the region ofr space well
beyond the potential barrier was adequately included. As al-
ready discussed, the pores can be expected to continually
grow without bound once their radius exceedsr c . So to
probe instabilities leading to irreversible pore rapture, it is
necessary forr max to exceedr c at zero transmembrane po-
tential. Next, from previous work it is known that the equi-
librium values of the pore radii are on the order of 0.8 Å .
Hence the chosen limitr max had to substantially exceed this
equilibrium value to allow for the adequate simulation of
nonequilibrium phenomena. Since the governing equation
~3! is a second order partial differential equation, two
suitable boundary conditions had to be imposed. Here,
a ‘‘reflecting boundary’’ was assigned atr 5r max,
which was implemented by setting the pore flux to
zero at r 5r max. Mathematically, this amounts to a
Neumann conditionof the form @dn(r ,t)/dr#ur 5r max
52@dE(r ,t)/dr#@n/(kBT)# r 5r max. At the other end, ab-
sorbing boundary conditions were implemented by setting
n(0,t)50. The time stepdt in these simulations was chosen
to be much smaller than the fluctuation ratend , which rep-
resents the fastest time constant in the system@32#. Specifi-
cally, dt510212 s was used. As an initial condition prior to
the application of an external voltage, the pore density was
taken to be zero at all the grid points. With zero applied
voltage, the functionn(r ) is then expected to reach a finite
steady state, with an average pore size of about 0.8 Å . This
is a simple validity check on the numerical scheme imple-
mented here, and was carried out in this work as discussed in
Sec. III.

The voltageV(t) was taken to have the exact time-
dependent shape corresponding to the external pulsed wave
form. The wave form was taken to have a basic rectangular
shape with exponentially rising and falling components. The
rise and fall times were chosen to be 2 ns. For the purposes
of calculating the transmembrane potential, a lumped equiva-
lent circuit as shown in Fig. 1 was employed. The use of
such a lumped circuit model for the cell perhaps requires
some justification, especially in light of a recent report on the

use of distributed transmission networks for cellular model-
ing @39#. The lumped approach is justified as long as the
distributed effects associated with the wave nature of electri-
cal signals can be ignored. Typically, a distributed model is
invoked to take into account the finite timeDT required for
the imposed signals, moving at the speed of light, to propa-
gate along their path. If the time intervalDT is comparable
to or larger than the time periodT of the signal, then distrib-
uted effects become necessary. Here, for the simulation of a
single cell, the largest distance corresponds to the cellular
diameter. Assuming a value on the higher side of about 680
mm, and taking a propagation velocity of 33107 ms21 ~i.e.,
a factor of 10 lower than the light speed in a vacuum!, one
obtainsDT52.26310211 s. This translates into a frequency
in excess of 40 GHz. Since the frequency of the applied
signals or their dominant Fourier transform components are
never as large, it seems fairly reasonable to use a lumped
circuit model. It must be pointed out though, that in the
present work, a circuit representation for the inner nucleus
has not been included. This essentially ignores the role of the
nucleus. The present model is therefore valid as long as the
nuclear dimensions are much smaller than the cell size, or if
its time constants are sufficiently different from those of the
membrane and cellular processes.

The equivalent circuit of Fig. 1 displays a resistanceRM
and capacitanceCM associated with the cell membrane, an
RC element representing the resistance of the cell fluid, and a
RL element representing the external circuit resistance,
which includes the contacts and wires. ElementsRS andCS
are the resistance and capacitances of the cell suspension,
respectively. The membrane resistanceRM represents the
conductivity of the cell membrane, which is typically a volt-
age controlled parameter. Physically, as electroporation be-
gins within a cell, the ionic flow through the newly created
aqueous pores increases. This leads to enhanced conductiv-
ity, and can macroscopically be described in terms of a volt-
age controlled conductance. Since the resistance is inversely
proportional to the pore size,RM has been modeled here as a
time varying function of the effective pore area. Quantita-
tively, this translates into the following equation forRM(t):

RM~ t !5RM0@SAp$V50,t→`%#/@SAp$V~ t !,t%#. ~4!

In the above equation,RM0 is the initial value of the mem-
brane resistance, under steady-state conditions for zero volt-
age. The parameterAp is the area of all the pores, which is
dependent on the time and the applied voltage. Equation~4!
implies that each pore does not have the same size, but is

FIG. 1. Lumped equivalent-circuit diagram of a cell used for
computing the transmembrane potential. The resting transmem-
brane potential was set to zero.
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governed by the distribution functionn(r ,t) for pores with
radii lying betweenr and r 1dr. Sincen(r ,t) is obtained
numerically through a solution to the equation, the area can
be ascertained at each time step. The numerator on the right
side of Eq.~4! can be obtained through numerical simula-
tions for zero applied voltage, carried out for long times. The
value of RM0 was chosen to be 100 MVin keeping with
previous reports@22#. Finally, since the area is obtained dy-
namically, the aqueous fractional areaFW(t), which yields
the ratio of pores to the total cell area, can be computed
easily as

FW~ t !5F E
0

`

pr 2n~r ,t !drG /@pR2#, ~5!

whereR is the radius of the cell.

III. RESULTS AND DISCUSSION

The energyE(r ) for hydrophilic pores, as a function of
the pore radius for different values of the transmembrane
potential at 300 K, is shown in Fig. 2. Since the evolution
dynamics of the pores is controlled by this parameter, a dis-
cussion ofE(r ) brings out trends in dynamical growth as a
function of the pore size. For zero applied voltage, a local
minima in the pore energy is predicted at about 0.8 nm. This
corresponds to the average or most likely pore size, under
steady-state equilibrium conditions. Figure 2 also predicts a
local maxima for the zero voltage case, at a pore radius of
about 18 nm. From the shape of the energy function, it be-
comes clear that all pores having radii less than 18 nm would
tend to experience a drift flux inr space toward smaller
values. Physically, the monotonic increase in pore energy
below 18 nm would force the pores in the system to shrink in
size and dynamically approach the 0.8 nm radius. Pores with
radii exceeding this threshold, however, would drift toward
larger values and expand without bound in an uncontrolled
fashion. Irreversible breakdown and cell rupture would there-
fore be the expected result, if pores could reach beyond the
stability threshold radiusr crit of 18 nm. At a 0.2 V transmem-
brane potential, a dramatic shift in both the peak energy and
the radius of the local maxima is predicted. The critical ra-
dius for stability reduces to about 5.8 nm, and so the prob-
ability that some fraction of the pores will exceed the stabil-

ity threshold correspondingly increases. The local minima is
not perturbed, and so the expected radius under steady state
equilibrium conditions still remains roughly at 0.8 nm. The
important point is that a potential barrier exists for the 0.2 V
voltage, and so irrespective of the pulse duration, the cells
are not expected to undergo irreversible breakdown. For 0.4
V across the cellular membrane, the maxima is virtually
eliminated. This therefore represents the minimum voltage
that would lead to cellular breakdown, provided the voltage
was applied long enough to enable the pores to grow past the
18 nm critical threshold. Since this voltage would apply
across both the upper and lower segments of a spherical cell,
this corresponds to a total voltage of 0.8 V across the entire
cell. For a pulse voltage, on the other hand, a breakdown
need not necessarily occur for the 0.4 V transmembrane po-
tential, if the time duration of the pulse were short. Under a
short duration scenario, pores would expand but not have
sufficient time to increase beyondr crit . As a result, once the
pulsed voltage reverted back to a zero magnitude, the pores
would all begin to shrink and recover in size to the 0.8 nm
level. Similarly, at the higher voltages of 0.6 and 0.8 V, the
local maxima is not seen, and the pores can potentially ex-
pand irreversibly without bound. However, here again in the
context of a pulsed voltage, membrane rupture can only take
place provided the pore radius has expanded beyond ther crit
threshold over the duration of the pulse. If instead the pulse
is terminated before this critical expansion can take place,
then the cell should recover and the pores should slowly
disappear over time. Based on the above logic, it also be-
comes apparent that there should be a critical ‘‘on-time’’
requirement for cell destruction, and that its magnitude
should decrease with applied voltage. At higher voltages, the
slope ofE(r ) is more strongly negative, which is indicative
of faster pore drift inr space. Hence the pulse would not
need to be on for as long a time before driving the pore
radius beyondr crit . A voltage-dependent characteristic time
can therefore be expected for cellular breakdown under
pulsed power conditions.

Next, time-dependent simulations were carried out based
on the Smoluchowski approach to probe the dynamics. Fig-
ure 3 shows the temporal evolution of the average pore ra-
dius ^r (t)& in response to various values of the transmem-
brane potential. The initial condition assumed zero pores,

FIG. 2. Energy for hydrophilic pores, as a function of the pore
radius for different values of the transmembrane potential.

FIG. 3. The temporal evolution of the average pore radius^r (t)&
in response to various values of the transmembrane potential.
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and so the assigned value for the radius was zero at the start.
For a zero volt voltage, a steady state is seen to be reached
fairly quickly within 1 ms. The predicted steady state value is
about 0.8 Å , in keeping with the local minima of Fig. 2. This
result thus validates the simulation scheme and its numerical
implementation. For nonzero membrane voltages of 0.33,
0.4, 0.5, and 0.6 V, the pores are predicted to continually
expand in size and the average radii to increase with time.
The results clearly reveal that the time required to reach the
20 nm threshold depends very nonlinearly on the applied
voltage. For example, times on the order of 5ms are pre-
dicted for 0.4 V, while this duration reduces dramatically to
1.5 and 0.8ms at voltages of 0.5 and 0.6 V. It must be
pointed out that the time durations of Fig. 3 are only indica-
tive of rough upperbounds. This overestimation results be-
cause breakdown is not controlled by the average size of the
entire population, but rather by the presence of a few pores
with radii exceedingr crit . Thus in actual practice, the pulse
durations required would be smaller, since they would re-
quire only a few pores from the distribution spanning the
entire r space to cross the threshold radius.

In order to better understand the individual pore dynamics
and temporal variations in the overall collection, results of
the pore distribution functionn(r ,t) for two voltage input
pulses are presented and discussed next. In Fig. 4, three
snapshots of the distributions at the observation times of 0.5,
1.0, and 4.0ms are shown for a 0.8 V pulse across the mem-
brane having a 0.5ms duration. The distributionn(r , t
50.5 ms) immediately following the termination of the
voltage has the broadest profile and the highest values be-
yond a 1 nm pore radius. Hence starting from a zero value at
the initial time, the 0.8 V membrane pulse is predicted to
cause a broad increase in the pore population, with a finite
nonzero distribution spanning well beyond the 0.8 nm equi-
librium radius. However, the result also indicates that for
times beyond 0.5ms, the pores would continually begin to
shrink in size, and the distribution would shift to lower val-
ues of the radius. The 1.0ms snapshot reveals a peak at
about 0.8 nm, which is roughly the equilibrium value. Fi-
nally, at 4ms, the pores have essentially decreased in num-
ber and clustered more around the 0.8 nm level. The obvious
inference is that a 0.8 V pulse having a duration of only 0.5

ms would be insufficient to cause irreversible damage to the
cell.

The results for a 1.2 V pulse having the same 0.5ms
duration, however, are predicted to be substantially different.
Shown in Fig. 5 are three snapshots of the pore distribution
at times of 0.5, 1.0, and 2.0ms. As compared to Fig. 4, the
distribution in Fig. 5 is a few orders of magnitude higher.
This is simply the result of a much larger generation rate that
depends exponentially on the membrane voltage. For this
situation, complete recovery is not predicted. As in Fig. 4,
the 0.5ms distribution has the broadest shape. After termi-
nation of the voltage pulse, all pores having radii below the
20 nm local maxima begin to shrink. This is primarily the
result of a positiveE(r ) slope, which provides a net drift in
r space toward lower values. The peak is seen to have in-
creased appreciably at 1.0ms and is located at a radius of
about 8 nm. At the later time of 2.0ms, the peak still appears
near the equilibrium level, but has a reduced magnitude.
These collective results are consistent with a dynamic
shrinkage of pores below the 18 nm threshold. However, for
radii beyond 18 nm, the curves of Fig. 5 do not exhibit any
appreciable change with time. Instead, the pores are pre-
dicted to remain without recovery. Given magnitudes that are
well above 1000, it is clear that this irreversible process is
likely to cause permanent damage due to the gradual and
continuous transport of ions and cell matter through these
large numbers of open pores.

The above differences in evolution for pores below and
above the 18 nm threshold radiusr crit is probed further in
Fig. 6. The temporal dynamics of the entire pore population
below 18 nm is plotted, together with the populations above
r crit . A 1.6 V, 0.5ms pulse was assumed. The population of
pores having radii belowr crit immediately shows a rapid in-
crease that continues to about 0.3ms. The growth rate rela-
tively slows between the 0.3 and 0.5ms interval, as some of
the bigger pores begin crossing theRcrit threshold. As a re-
sult, the corresponding population of ther .r crit group starts
to increase dramatically at about 0.3ms. Following the ter-
mination of the voltage pulse at 0.5ms, the population of the
group with the smaller radii begins to decrease. However, the
numbers of ther .r crit group exhibit a continued increase
beyond 0.5ms. This simulation provides a clear indication
of irreversible breakdown and the nonrecovery of the cell

FIG. 4. Results of the pore distribution function at three time
instants in response to a 0.8 V, 0.5ms applied voltage pulse. Irre-
versible damage is not predicted.

FIG. 5. Results of the pore distribution function at three time
instants for a 1.2 V, 0.5ms applied voltage pulse. Complete recov-
ery is not predicted.
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membrane following the 1.6 V pulse.
The above results quantitatively shown the important role

of both the applied voltage and the pulse duration in affect-
ing irreversible breakdown. However, in order to validate
this model further, it is important to make direct comparisons
between the model predictions and actual observable quanti-
ties. Unfortunately, neither pores not their distributions can
be measured directly, and so direct comparisons cannot be
made. Here, for purposes of making direct comparisons, we
examine the relationship between applied voltage~and hence
the input energy!and the pulse width necessary for irrevers-
ible breakdown. As a first step, such a relationship would
help in providing useful guidelines on the pulse characteris-
tics for pulsed power applications. In addition, carefully
comparing predicted trends between the voltage and pulse
widths with experimental observations would yield a direct
assessment of the present model. The pulse width necessary
for bringing about irreversible breakdown at a given applied
voltage can roughly be estimated by focusing on the drift
term of the Smoluchowski equation. The rate of change in
the pore radius~i.e., the velocity term that controls the pore
growth! is given asdr/dt5@dE(r )/dr#* $D/@kBT#%. Using
the expression for the hydrophilic pore energy, and ignoring
the steric repulsion term, one obtains

dr/dt5$D/@kBT#%@2pg22psr 22papV2r #. ~6!

Clearly, for irreversible breakdown, the pore radius has to
grow in response to the applied voltage from a value of
r min50.8 mn~i.e., roughly the equilibrium level! to at least
r crit while the pulse is on. Hence the minimum pulse width
tpulserequired for the breakdown threshold to be reached can
be computed by integrating Eq.~5! between the limits ofr crit
andr min . The result is straightforward, and yields the follow-
ing relationship:

tpulse5$@kBT#/D%@2ps12papV2#21

3$@2g1~s1apV2!r crit#/@2g~s1apV2!r min#%. ~7!

Based on the above expression, the values of minimum pulse
width can be computed as a function of the transmembrane
potentialV. The results are shown in Fig. 7. The total input
energy, which is proportional toV2tpulse, is also given. The

pulse widths range from about 1025 s to slightly less than 1
ns and correspond to voltage variations lying between 1.1
and 70 V. The range of the pulse widths matches the typical
experimental time scales that have been used recently and
reported by one of us@13#. Hence the model gives very good
agreement. The voltage trend predicted here also matches the
observations reported in Ref.@13#. For example, a similar
two-region curve is predicted here, with a slower voltage for
longer pulses beyond 1ms, and a sharper rise for the lower
pulse durations. The change in slope is associated with the
requirement of a minimum threshold voltage for bringing
about irreversible damage. The energy curve predicts a sharp
decrease as the pulse widths are reduced from beyond the
microsecond range. A similar trend was observed in Ref.
@13#. Technologically, in terms of the overall system effi-
ciency, this result makes a compelling case for the use of
pulse widths that have durations lower than 1ms. However,
a saturating effect is predicted below the submicrosecond
range. This again is in keeping with a report onE. coli stud-
ies @13#. This simple model therefore suggests that there
would be no compelling reasons for reducing the pulse
widths below the 0.1ms level. However, it must be pointed
out that the present model applies only to the electroporation
process at the lipid bilayer of the cellular membrane. How-
ever, other considerations such as the dynamics of the
nuclear membrane or other processes may favor the use of
lower pulse widths.

A final comment concerns the role of dissipation in the
biological system. The result presented above did not include
the circuit aspects and hence did not account for the dissipa-
tive energy losses within the various equivalent resistors. For
self-consistency, and to probe the effects of equivalent cir-
cuit parameters, calculations for the voltage-dependent pulse
width were carried out by using the circuit model of Fig. 1.
In this situation, the expansion and growth of pores would
not be limited to the duration of the applied pulse, but could
also occur during the ‘‘OFF’’ state as long as the membrane
capacitor voltage was above its zero value. This voltage de-
cay time, as well as the initial charging times, would both
depend on the time constants for the equivalent circuit. The
role of circuit parameters in this regard is demonstrated in
Fig. 8, which shows the time dependence of the transmem-
brane potential in response to a 2 V, 0.5ms voltage pulse.

FIG. 6. Temporal evolution of the pore populations with radii
above and below 18 nm response to a 1.6 V, 0.5ms applied voltage
pulse.

FIG. 7. Calculations of the voltage and energy versus the mini-
mum pulse width necessary to initiate irreversible breakdown.
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Simulations were performed based on the values given in
Table I. Two different time constants~i.e., CMRc values!
were used to bring out differences in the response. Based on
Fig. 8, the rise and fall times for the two cases are seen to be
roughly 0.018 and 0.2ms, respectively. These results bring
out a very clear implication for short voltage pulses. For
instance, with a slow internal time constant, the full voltage
would not be applied across the individual cell membrane if
pulse durations were less than 0.2ms in this case. Due to the
lower value of the actual cell potential, a higher threshold
would be necessary to cause the same destructive effect for
smaller pulse widths. The demands on the expended energy
would also increase as the pulse durations shrunk toward the
submicrosecond regime.

Results for the voltage threshold at a given pulse width,
including circuit effects, obtained from the use of the Smolu-
chowski drift term are show in Fig. 9. Time constants of 20
ns and 2ms were used as typically representing the values
for microbes and mammalian cells, respectively. These val-
ues can easily be obtained from typical parameters such as
the cell resistivity, capacitance, and cell area@40#. The figure
shows both the requisite applied voltageV and the corre-
sponding energy~i.e., V2tpulse) as a function of the pulse
width tpulse. As compared to Fig. 7, two main effects are

immediately obvious. First, both the voltage and the energy
input are substantially larger with circuit effects taken into
account. Physically, this conclusion is in keeping with the
additional dissipation included in the system. Second, the
shape of the energy function changes and exhibits a local
minima. The location of this minima is dependent on the
charging time parameter. For example, for a 20 ns value, a
relatively broad minima is predicted. However, the 2ms
value has a much narrower regime centered around 0.75ms.
Furthermore, the asymptotic behavior at the low pulse widths
shown in Fig. 7 has now disappeared in Fig. 9. The main
conclusions that can be drawn from the above are the follow-
ing:

~i! There will exist a local minima in the energy versus
pulse width curve. From a practical standpoint, this corre-
sponds to an optimal pulse width setting for bringing about
irreversible damage to biological cells.

~ii! The precise location of this optimal pulse width and
the energy input necessary will depend on the details of the
cellular species and the internal time constants. In general,
for cells having a smaller time constant, a better system ef-
ficiency would result from the use of such a pulsed power
approach.

~iii! A decrease in the internalRC time constant, will shift
the optimal operating point to lower pulse widths.

~iv! Finally, it is possible then to obtain somewhat differ-
ent energy-pulse width~E-P! characteristics depending on
the organism under study. This prediction is in excellent
agreement with a previous experimental report@13# that
clearly showed varying E-P shapes.

IV. SUMMARY AND CONCLUSIONS

A model analysis of electroporation in biological cells has
been carried out based on the Smoluchowski equation. One
of the objectives was to obtain predictions and a qualitative
understanding of the cellular response to short, electric
pulses by taking account of the growth and resealing dynam-
ics. The physical processes of pore generation, drift, and dif-
fusion in r space were all comprehensively included. The
free energy of pore formation was shown to be important,
and have a role in the following aspects:

~i! Determination of the steady state pore distributions and
average pore size.

~ii! Influence on the generation rate, which also depends
on the transmembrane potential.

~iii! The existence of a natural stability region inr space.
It was shown that pores with radii less than a critical thresh-
old would recover~or heal! and not lead to irreversible
breakdown.

~iv! The existence of a threshold voltage for a given pulse
width based on the drift inr space controlled by the energy
E(r ).

It was shown via simulations that the application of large
voltages along may not be sufficient to cause irreversible
breakdown, if the time duration is short. It has been argued
here that the failure to cause irreversible damage at small
pulse widths can be attributed to the time inadequacy for the
pores to grow and expand beyond the critical threshold ra-
dius. Also, implicit is a memory effect for the system. It
follows from the present discussion that if a subsequent volt-

FIG. 8. Time dependence of the transmembrane potential in
response to an applied 2 V, 0.5ms voltage pulse for two different
internal circuit time constants.

FIG. 9. Calculations of the voltage and energy versus minimum
pulse width for irreversible breakdown with circuit effects taken
into account.
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age pulse were to be applied before the pores had a chance to
fully recover to their equilibrium values, then a much shorter
time duration would be required for irreversible failure.

The transmembrane potential for irreversible breakdown
for quasistatic pulses has been shown to be about 0.5 V,
which leads to a total cell potential of 1.0 V. This is in
keeping with previous reports in the literature. It was also
shown that irreversible breakdown would lead to the forma-
tion of a few large pores, while a large number of smaller
pores would result in the case of reversible breakdown. Fi-
nally, the pulse width dependence of the applied voltage was
obtained based on the growth of pores to the critical radius.
In the absence of dissipation, the energy input necessary was
shown to reduce with decreasing pulse width and reach a
limiting value. However, with circuit effects taken into ac-
count, a local minima in the pulse dependent energy function
is predicted. This is in keeping with some previously pub-
lished experimental reports, and thus provides indirect vali-

dation of present model. It has also been shown that an op-
timal pulse width in the submicrosecond regime is likely to
exist for irreversible damage to biological cells. This con-
firms an inherent utility for ultrashort, pulsed-power sources.
More careful calculations to include mass transport, variable
surface tension, cellular deformations and the effects on cir-
cuit equivalent circuit parameters will have to be carried out
for a better representation and understanding of the actual
biological system.
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