8 research outputs found

    Cryogenic EBSD on ice: preserving a stable surface in a low pressure SEM

    Get PDF
    Naturally deformed ice contains subgrains with characteristic geometries that have recently been identified in etched surfaces using high-resolution light microscopy (LM). The probable slip systems responsible for these subgrain boundary types can be determined using electron backscattered diffraction (EBSD), providing the etch features imaged with reflected LM can be retained during EBSD data acquisition in a scanning electron microscope (SEM). Retention of the etch features requires that the ice surface is stable. Depending on the pressure and temperature, sublimation of ice can occur. The equilibrium temperature for a low pressure SEM operating at 1 × 10^&#8722;6 hPa is about &#8722;112°C and operating at higher temperatures causes sublimation. Although charging of uncoated ice samples is reduced by sublimation, important information contained in the etch features are removed as the surface sublimes. We developed a method for collecting EBSD data on stable ice surfaces in a low pressure SEM. We found that operating at temperatures of <112°C reduced sublimation so that the original etch surface features were retained. Charging, which occurred at low pressures (<1.5 × 10^&#8722;6 to 2.8 × 10^&#8722;5 hPa) was reduced by defocusing the beam. At very low pressures (<1.5 × 10^&#8722;6 hPa) the spatial resolution with a defocused beam at 10 kV was about 3 &#956;m in the x-direction at &#8722;150°C and 0.5 &#956;m at &#8722;120°C, because at higher temperature charging was less and only a small defocus was needed to compensate it. Angular resolution was better than 0.7° after orientation averaging. Excellent agreement was obtained between LM etch features and EBSD mapped microstructures. First results are shown, which indicate subgrain boundary types comprised of basal (tilt and twist) and nonbasal dislocations (tilt boundaries)

    In-situ integrity control of frozen-hydrated, vitreous lamellas prepared by the cryo-focused ion beam-scanning electron microscope

    No full text
    \u3cp\u3eRecently a number of new approaches have been presented with the intention to produce electron beam transparent cryo-sections (lamellas in FIB-SEM terminology) from hydrated vitreously frozen cryo samples with a Focused Ion Beam (FIB) system, suitable for cryo-Transmission Electron Microscopy (cryo-TEM). As the workflow is still challenging and time consuming, it is important to be able to determine the integrity and suitability (cells vs. no cells; vitreous vs. crystalline) of the lamellas. Here we present an in situ method that tests both conditions by using the cryo-Scanning Electron Microscope (cryo-SEM) in transmission mode (TSEM; Transmission Scanning Electron Microscope) once the FIB-made lamella is ready. Cryo-TSEM imaging of unstained cells yields strong contrast, enabling direct imaging of material present in the lamellas. In addition, orientation contrast is shown to be suitable for distinguishing crystalline lamellas from vitreous lamellas. Tilting the stage a few degrees results in changes of contrast between ice grains as a function of the tilt angle, whereas the contrast of areas with vitreous ice remains unchanged as a function of the tilt angle. This orientation contrast has subsequently been validated by cryo-Electron BackScattered Diffraction (EBSD) in transmission mode. Integration of the presented method is discussed and the role it can play in future developments for a new and innovative all-in-one cryo-FIB-SEM life sciences instrument.\u3c/p\u3

    Silica cubes with tunable coating thickness and porosity : From hematite filled silica boxes to hollow silica bubbles

    No full text
    We investigate the material properties of micron-sized silica coated cubic colloids, focusing on the coating thickness and porosity. The thickness of the silica coating of core-shell α-Fe2O3@SiO2 cubes and their corresponding hollow cubes can be tuned between 20 and 80 nm, spanning the range of silica bubbles to silica boxes. The porosity of the silica cubes can be increased controllably by surface-protected etching using hot water as mild etchant and polyvinylpyrrolidone (PVP) as protecting polymer. We introduce infrared spectroscopy as a quantitative tool to monitor the extent of etching over time and to evaluate the influence of PVP on the etching process. The molar mass of PVP does not affect the etching rate, whereas an increased amount of PVP leads to enhanced protection against etching. Silica etching is found to be a two-step process, comprising a fast initial etching followed by a slower continuation. Hollow, porous silica cubes maintain their shape after extensive thermal treatment, demonstrating their mechanical stability

    Everolimus-Eluting Stents or Bypass Surgery for Left Main Coronary Artery Disease

    No full text
    BACKGROUND Patients with obstructive left main coronary artery disease are usually treated with coronary-artery bypass grafting (CABG). Randomized trials have suggested that drug-eluting stents may be an acceptable alternative to CABG in selected patients with left main coronary disease.METHODS We randomly assigned 1905 eligible patients with left main coronary artery disease of low or intermediate anatomical complexity to undergo either percutaneous coronary intervention (PCI) with fluoropolymer-based cobalt-chromium everolimus-eluting stents (PCI group, 948 patients) or CABG (CABG group, 957 patients). Anatomic complexity was assessed at the sites and defined by a Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) score of 32 or lower (the SYNTAX score reflects a comprehensive angiographic assessment of the coronary vasculature, with 0 as the lowest score and higher scores [ no upper limit] indicating more complex coronary anatomy). The primary end point was the rate of a composite of death from any cause, stroke, or myocardial infarction at 3 years, and the trial was powered for noninferiority testing of the primary end point (noninferiority margin, 4.2 percentage points). Major secondary end points included the rate of a composite of death from any cause, stroke, or myocardial infarction at 30 days and the rate of a composite of death, stroke, myocardial infarction, or ischemia-driven revascularization at 3 years. Event rates were based on Kaplan-Meier estimates in time-to-first-event analyses.RESULTS At 3 years, a primary end-point event had occurred in 15.4% of the patients in the PCI group and in 14.7% of the patients in the CABG group (difference, 0.7 percentage points; upper 97.5% confidence limit, 4.0 percentage points; P = 0.02 for noninferiority; hazard ratio, 1.00; 95% confidence interval, 0.79 to 1.26; P = 0.98 for superiority). The secondary end-point event of death, stroke, or myocardial infarction at 30 days occurred in 4.9% of the patients in the PCI group and in 7.9% in the CABG group (P< 0.001 for noninferiority, P = 0.008 for superiority). The secondary end-point event of death, stroke, myocardial infarction, or ischemia-driven revascularization at 3 years occurred in 23.1% of the patients in the PCI group and in 19.1% in the CABG group (P = 0.01 for noninferiority, P = 0.10 for superiority).CONCLUSIONS In patients with left main coronary artery disease and low or intermediate SYNTAX scores by site assessment, PCI with everolimus-eluting stents was noninferior to CABG with respect to the rate of the composite end point of death, stroke, or myocardial infarction at 3 years. (Funded by Abbott Vascular; EXCEL ClinicalTrials.gov number, NCT01205776.
    corecore