24,811 research outputs found
Highlights of the Science and Life of Peter Varga (1946â2018)
Peter Varga has passed on October 27, 2018. His pioneering discoveries of chemical resolution at the atomic scale on surface alloys, atomic resolution of ultrathin alkali halides, nucleation of bcc iron in ultrathin films, and the microscopic structure of ultrathin alumina films stimulated worldwide research. In recognition of his outstanding scientific contributions, in December 2017 the Japanese Society for the Promotion of Science (JSPS) awarded him a prize for his distinguished contribution on the clarification of surface phenomena by atomic level investigations and the development of novel functional materials. This contribution highlights the life of Peter Varga as a scientist and as a person. With his elegance, his energy, his wit, and his generosity he was a close friend and role model to many of us, and showed us how to combine scientific curiosity and creativity with the lightness of being
Possibilities and limitations of protein supply in organic poultry and pig production
It is one of the general recommendations in animal nutrition that the diet should be formulated according to the specific requirements of animals at the various stages of their development. To which degree the farmer can adapt the nutrient supply to the specific requirements of the animals depends primarily on the production goal and on the availability of nutrient resources. This report gives a general introduction to the present situation for dietary protein supply to poultry and pig production in relation to the principles for organic agriculture and husbandry production. Furthermore it includes partly literature based on research from conventional animal production, as the requirements on the level of the animals are not different in both systems. Moreover, there only few research projects of organic production systems available.
This report is primarily focussing on the question whether a nutrient supply of 100% organic feed can and should be realised. In this context, it is not possible to cover all aspects in detail as the report cannot replace a textbook. The main emphasis is laid on a coherent argumentation based on the leading ideas of organic agriculture. Concerning further relevant aspects it is referred to the report âSupply and demand for concentrated organic feed in the EU in 2002 and 2003â by Susanne Padel as part of the same EU-project: âResearch to support the EU-regulation on Organic Agricultureâ (www.organic-revision.org) and to the project âAvailability of organically reared livestockâ (S. Gomez, JRC, Institute for Prospective Technological Studies, this study is expected to be completed in November 2005).
In conventional animal production, a nutrient supply that is closely related to the requirements is an important tool in the performance-oriented production (FLACHOWSKY, 1998). The objective of animal nutrition is to adapt the nutrient supply as accurately as possible to the requirements resulting from maintenance and performance need. Soybean meal, due to the high protein content and high protein quality, has developed into the most important protein source in the nutrition of monogastric animals. Additionally, synthetic amino acids (DL-methionine) and industrial amino acids (produced from microbial fermentation, L-amino acids) are used to balance the supply of essential amino acids.
While the use of soybean meal and synthetic amino acids is normal practice in conventional animal production, the Council-Regulation No. 2092/91, amended by Council Regulation No. 1804/99 on organic livestock production bans the use of chemically extracted soybean meal and synthetic amino acids on organic farms as livestock must be fed primarily on organically produced feedstuffs (Annex 1, paragraph 4.2). By way of a derogation from paragraph 4.2, for a transitional period expiring on 24 August 2005, the use of a limited proportion of non-organic feedstuffs is authorised where farmers can show to the satisfaction of the inspection body that they are unable to obtain feed exclusively from organic production (paragraph 4.8). The derogation, although with a declining percentage of non-organic feedstuffs over the next years, has been prolonged in July 2005.
The preferable use of home-grown feedstuffs and limitations in the choice of boughtin
feedstuffs can be the cause of considerable variation in the composition of the diets, and considerably restrict the possibilities for the adaptation of the feed ration to the specific requirements. Due to the limited availability of essential amino acids in particular, there is concern that nutritional imbalances encountered in practice might lead to deteriorating animal health and welfare. On the other hand, there is also the concern that allowing conventional feedstuffs to be fed in organic livestock production will result in intensification of production. The intensification might cause the same problems in organic production as conventional production already shows (animal health problems, risk of residues and GM contamination etc.). Thus, the use of non-organic feedstuffs may have a damaging effect on consumer confidence in organic products of animal origin.
In the following the nutritional-physiological effects of a variation in protein supply with respect to growth performance and protein accretion in broilers, turkeys, laying hens, and pigs are examined by means of a literature review. Additionally, the potential effects of the protein content in the diet on product quality, animal health and environmental damage are addressed.
It is the aim of the report to provide an overview of the many different aspects of the protein supply in organic poultry and pig production. Many different aspects are taken into account to elaborate possibilities to handle the use of organic and non-organic feedstuffs with respect to the objectives and framework conditions of organic livestock production. However, due to the complex interactions not all aspects can be covered. There is room and need for explanation and for further research
Scaling of broadband dielectric data of glass-forming liquids and plastic crystals
The Nagel-scaling and the modified scaling procedure proposed recently by
Dendzik et al. have been applied to broadband dielectric data on two glass-
forming liquids (glycerol and propylene carbonate) and three plastic crystals
(ortho-carborane, meta-carborane, and 1-cyano-adamantane). Our data extend the
upper limit of the abscissa range to considerably higher values than in
previously published analyses. At the highest frequencies investigated,
deviations from a single master curve show up which are most pronounced in the
Dendzik-scaling plot. The loss curves of the plastic crystals do not scale in
the Nagel-plot, but they fall onto a separate master curve in the Dendzik-plot.
In addition, we address the question of a possible divergence of the static
susceptibility near the Vogel-Fulcher temperature. For this purpose, the
low-temperature evolution of the high-frequency wing of the dielectric loss
peaks is investigated in detail. No convincing proof for such a divergence can
be deduced from the present broadband data.Comment: 7 pages including 6 figures submitted to Eur. Phys. J.
Phase diagram of the Bose Kondo-Hubbard model
We study a bosonic version of the Kondo lattice model with an on-site
repulsion in the conduction band, implemented with alkali atoms in two bands of
an optical lattice. Using both weak and strong-coupling perturbation theory, we
find that at unit filling of the conduction bosons the superfluid to Mott
insulator transition should be accompanied by a magnetic transition from a
ferromagnet (in the superfluid) to a paramagnet (in the Mott insulator).
Furthermore, an analytic treatment of Gutzwiller mean-field theory reveals that
quantum spin fluctuations induced by the Kondo exchange cause the otherwise
continuous superfluid to Mott-insulator phase transition to be first order. We
show that lattice separability imposes a serious constraint on proposals to
exploit excited bands for quantum simulations, and discuss a way to overcome
this constraint in the context of our model by using an experimentally realized
non-separable lattice. A method to probe the first-order nature of the
transition based on collapses and revivals of the matter-wave field is also
discussed.Comment: 10 pages, 5 figures, V2: extended discussion of effective
Hamiltonians and mean-field theory, added Fig.
The excess wing in the dielectric loss of glass-forming ethanol: A relaxation process
A detailed dielectric investigation of liquid, supercooled liquid, and glassy
ethanol reveals a third relaxation process, in addition to the two processes
already known. The relaxation time of the newly detected process exhibits
strong deviations from thermally activated behavior. Most important, this
process is the cause of the apparent excess wing, which was claimed to be
present in the dielectric loss spectra of glass-forming ethanol. In addition,
marked deviations of the spectra of ethanol from the scaling proposed by Dixon
and Nagel have been detected.Comment: 8 pages including 4 figures submitted to Phys. Rev.
The Excess Wing in the Dielectric Loss of Glass-Formers: A Johari-Goldstein beta-Relaxation?
Dielectric loss spectra of glass-forming propylene carbonate and glycerol at
temperatures above and below T_g are presented. By performing aging experiments
lasting up to five weeks, equilibrium spectra below T_g have been obtained.
During aging, the excess wing, showing up as a second power law at high
frequencies, develops into a shoulder. The results strongly suggest that the
excess wing, observed in a variety of glass formers, is the high-frequency
flank of a beta-relaxation.Comment: submitted to Phys. Rev. Lett., 4 figures, revised version after
referee report
On aberration in gravitational lensing
It is known that a relative translational motion between the deflector and
the observer affects gravitational lensing. In this paper, a lens equation is
obtained to describe such effects on actual lensing observables. Results can be
easily interpreted in terms of aberration of light-rays. Both radial and
transverse motions with relativistic velocities are considered. The lens
equation is derived by first considering geodesic motion of photons in the
rest-frame Schwarzschild spacetime of the lens, and, then, light-ray detection
in the moving observer's frame. Due to the transverse motion images are
displaced and distorted in the observer's celestial sphere, whereas the radial
velocity along the line of sight causes an effective re-scaling of the lens
mass. The Einstein ring is distorted to an ellipse whereas the caustics in the
source plane are still point-like. Either for null transverse motion or up to
linear order in velocities, the critical curve is still a circle with its
radius corrected by a factor (1+z_d) with respect to the static case, z_d being
the relativistic Doppler shift of the deflector. From the observational point
of view, the orbital motion of the Earth can cause potentially observable
corrections of the order of the microarcsec in lensing towards the
super-massive black hole at the Galactic center. On a cosmological scale,
tangential peculiar velocities of cluster of galaxies bring about a typical
flexion in images of background galaxies in the weak lensing regime but future
measurements seem to be too much challenging.Comment: 8 pages, 2 figures, in press on PR
Small-angle x-ray-scattering study of phase separation and crystallization in the bulk amorphous Mg62Cu25Y10Li3 alloy
We report on a small-angle x-ray-scattering (SAXS) and differential scanning calorimetry study of phase separation and crystallization in rapidly quenched amorphous Mg62Cu25Y10Li3 alloy samples. Differential scanning calorimetry demonstrates the occurrence of crystallization and grain growth upon isothermal annealing of these samples at 135 °C. The SAXS studies show the presence of large inhomogeneities even in the rapidly quenched as-prepared Mg62Cu25Y10Li3 alloy that is attributed to phase separation in the undercooled liquid during the cooling process. After isothermal annealing at 135 °C for longer than 30 min the samples exhibit a strong SAXS intensity that monotonically increases with increasing annealing time. During heat treatment, crystallization and growth of a nanocrystalline bcc-Mg7Li3 phase occurs in the Y-poor and MgLi-rich domains. The initially rough boundaries of the nanocrystals become sharper with increasing annealing time. Anomalous small-angle x-ray-scattering investigations near the Cu K edge indicate that while Cu is distributed homogeneously in the as-prepared sample, a Cu composition gradient develops between the matrix and the bcc-Mg7Li3 nanocrystals in the annealed sample
- âŠ