589 research outputs found

    Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus. III. Lipid II is an in vivo peptidoglycan substrate for sortase-catalyzed surface protein anchoring

    Get PDF
    Surface proteins of Staphylococcus aureus are anchored to the cell wall peptidoglycan by a mechanism requiring a C-terminal sorting signal with an LPXTG motif. Surface proteins are first synthesized in the bacterial cytoplasm and then transported across the cytoplasmic membrane. Cleavage of the N-terminal signal peptide of the cytoplasmic surface protein P1 precursor generates the extracellular P2 species, which is the substrate for the cell wall anchoring reaction. Sortase, a membrane-anchored transpeptidase, cleaves P2 between the threonine (T) and the glycine (G) of the LPXTG motif and catalyzes the formation of an amide bond between the carboxyl group of threonine and the amino group of cell wall cross-bridges. We have used metabolic labeling of staphylococcal cultures with [32P]phosphoric acid to reveal a P3 intermediate. The 32P-label of immunoprecipitated surface protein is removed by treatment with lysostaphin, a glycyl-glycine endopeptidase that separates the cell wall anchor structure. Furthermore, the appearance of P3 is prevented in the absence of sortase or by the inhibition of cell wall synthesis. 32P-Labeled cell wall anchor species bind to nisin, an antibiotic that is known to form a complex with lipid II. Thus, it appears that the P3 intermediate represents surface protein linked to the lipid II peptidoglycan precursor. The data support a model whereby lipid II-linked polypeptides are incorporated into the growing peptidoglycan via the transpeptidation and transglycosylation reactions of cell wall synthesis, generating mature cell wall-linked surface protein

    Enzymatic properties of Staphylococcus aureus adenosine synthase (AdsA)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Staphylococcus aureus </it>is a human pathogen that produces extracellular adenosine to evade clearance by the host immune system, an activity attributed to the 5'-nucleotidase activity of adenosine synthase (AdsA). In mammals, conversion of adenosine triphosphate to adenosine is catalyzed in a two-step process: ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTDPases) hydrolyze ATP and ADP to AMP, whereas 5'-nucleotidases hydrolyze AMP to adenosine. NTPDases harbor apyrase conserved regions (ACRs) that are critical for activity.</p> <p>Results</p> <p>NTPDase ACR motifs are absent in AdsA, yet we report here that recombinant AdsA hydrolyzes ADP and ATP in addition to AMP. Competition assays suggest that hydrolysis occurs following binding of all three substrates at a unique site. Alanine substitution of two amino acids, aspartic acid 127 and histidine 196 within the 5'-nucleotidase signature sequence, leads to reduced AMP or ADP hydrolysis but does not affect the binding of these substrates.</p> <p>Conclusion</p> <p>Collectively, these results provide insight into the unique ability of AdsA to produce adenosine through the consecutive hydrolysis of ATP, ADP and AMP, thereby endowing <it>S. aureus </it>with the ability to modulate host immune responses.</p

    Structures of Sortase B from Staphylococcus aureus and Bacillus anthracis Reveal Catalytic Amino Acid Triad in the Active Site

    Get PDF
    Surface proteins attached by sortases to the cell wall envelope of bacterial pathogens play important roles during infection. Sorting and attachment of these proteins is directed by C-terminal signals. Sortase B of S. aureus recognizes a motif NPQTN, cleaves the polypeptide after the Thr residue, and attaches the protein to pentaglycine cross-bridges. Sortase B of B. anthracis is thought to recognize the NPKTG motif, and attaches surface proteins to m-diaminopimelic acid cross-bridges. We have determined crystal structure of sortase B from B. anthracis and S. aureus at 1.6 and 2.0 Å resolutions, respectively. These structures show a β-barrel fold with α-helical elements on its outside, a structure thus far exclusive to the sortase family. A putative active site located on the edge of the β-barrel is comprised of a Cys-His-Asp catalytic triad and presumably faces the bacterial cell surface. A putative binding site for the sorting signal is located nearby

    Processing of LtaS restricts LTA assembly and YSIRK preprotein trafficking into <i>Staphylococcus aureus</i> cross-walls

    Get PDF
    Septal membranes of Staphylococcus aureus serve as the site of secretion for precursors endowed with the YSIRK motif. Depletion of ltaS, a gene required for lipoteichoic acid (LTA) synthesis, results in the loss of restricted trafficking of YSIRK precursors to septal membranes. Here, we seek to understand the mechanism that ties LTA assembly and trafficking of YSIRK precursors. We confirm that catalytically inactive lipoteichoic acid synthase (LtaS)T300A does not support YSIRK precursor trafficking to septa. We hypothesize that the enzyme’s reactants [gentiobiosyldiacylglycerol (Glc2-DAG) and phosphatidylglycerol (PG)] or products [LTA and diacylglycerol (DAG)], not LtaS, must drive this process. Indeed, we observe that septal secretion of the staphylococcal protein A YSIRK precursor is lost in ypfP and ltaA mutants that produce glycerophosphate polymers [poly(Gro-P)] without the Glc2-DAG lipid anchor. These mutants display longer poly(Gro-P) chains, implying enhanced PG consumption and DAG production. Our experiments also reveal that in the absence of Glc2-DAG, the processing of LtaS to the extracellular catalytic domain, eLtaS, is impaired. Conversely, LTA polymerization is delayed in a strain producing LtaSS218P, a variant processed more slowly than LtaS. We conclude that Glc2-DAG binding to the enzyme couples catalysis by LtaS and the physical release of eLtaS. We propose a model for the temporal and localized assembly of LTA into cross-walls. When LtaS is not processed in a timely manner, eLtaS no longer diffuses upon daughter cell splitting, LTA assembly continues, and the unique septal-lipid pool, PG over DAG ratio, is not established. This results in profound physiological changes in S. aureus cells, including the inability to restrict the secretion of YSIRK precursors at septal membranes

    Acylpeptide hydrolase: inhibitors and some active site residues of the human enzyme.

    Get PDF
    Acylpeptide hydrolase may be involved in N-terminal deacetylation of nascent polypeptide chains and of bioactive peptides. The activity of this enzyme from human erythrocytes is sensitive to anions such as chloride, nitrate, and fluoride. Furthermore, blocked amino acids act as competitive inhibitors of the enzyme. Acetyl leucine chloromethyl ketone has been employed to identify one active site residue as His-707. Diisopropylfluorophosphate has been used to identify a second active site residue as Ser-587. Chemical modification studies with a water-soluble carbodiimide implicate a carboxyl group in catalytic activity. These results and the sequence around these active site residues, especially near Ser-587, suggest that acylpeptide hydrolase contains a catalytic triad. The presence of a cysteine residue in the vicinity of the active site is suggested by the inactivation of the enzyme by sulfhydryl-modifying agents and also by a low amount of modification by the peptide chloromethyl ketone inhibitor. Ebelactone A, an inhibitor of the formyl aminopeptidase, the bacterial counterpart of eukaryotic acylpeptide hydrolase, was found to be an effective inhibitor of this enzyme. These findings suggest that acylpeptidase hydrolase is a member of a family of enzymes with extremely diverse functions

    Anchoring of proteins to lactic acid bacteria

    Get PDF
    The anchoring of proteins to the cell surface of lactic acid bacteria (LAB) using genetic techniques is an exciting and emerging research area that holds great promise for a wide variety of biotechnological applications. This paper reviews five different types of anchoring domains that have been explored for their efficiency in attaching hybrid proteins to the cell membrane or cell wall of LAB. The most exploited anchoring regions are those with the LPXTG box that bind the proteins in a covalent way to the cell wall. In recent years, two new modes of cell wall protein anchoring have been studied and these may provide new approaches in surface display. The important progress that is being made with cell surface display of chimaeric proteins in the areas of vaccine development and enzyme- or whole-cell immobilisation is highlighted.
    corecore