118 research outputs found
Realtime Multichannel System for Beat to Beat QT Interval Variability
The measurement of beat-to-beat QT interval variability (QTV) shows clinical promise for identifying several types of cardiac pathology. However, until now, there has been no device capable of displaying, in real time on a beattobeat basis, changes in QTV in all 12 conventional leads in a continuously monitored patient. While several software programs have been designed to analyze QTV, heretofore, such programs have all involved only a few channels (at most) and/or have required laborious user interaction or offline calculations and postprocessing, limiting their clinical utility. This paper describes a PC-based ECG software program that in real time, acquires, analyzes and displays QTV and also PQ interval variability (PQV) in each of the eight independent channels that constitute the 12lead conventional ECG. The system also processes certain related signals that are derived from singular value decomposition and that help to reduce the overall effects of noise on the realtime QTV and PQV results
System for the diagnosis and monitoring of coronary artery disease, acute coronary syndromes, cardiomyopathy and other cardiac conditions
Cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed and stored in a useful form using a computer. The computer monitor displays various useful information, and in particular graphically displays various permutations of reduced amplitude zones and kurtosis that increase the rapidity and accuracy of cardiac diagnoses. New criteria for reduced amplitude zones are defined that enhance the sensitivity and specificity for detecting cardiac abnormalities
Noninvasive Diagnosis of Coronary Artery Disease Using 12-Lead High-Frequency Electrocardiograms
A noninvasive, sensitive method of diagnosing certain pathological conditions of the human heart involves computational processing of digitized electrocardiographic (ECG) signals acquired from a patient at all 12 conventional ECG electrode positions. In the processing, attention is focused on low-amplitude, high-frequency components of those portions of the ECG signals known in the art as QRS complexes. The unique contribution of this method lies in the utilization of signal features and combinations of signal features from various combinations of electrode positions, not reported previously, that have been found to be helpful in diagnosing coronary artery disease and such related pathological conditions as myocardial ischemia, myocardial infarction, and congestive heart failure. The electronic hardware and software used to acquire the QRS complexes and perform some preliminary analyses of their high-frequency components were summarized in Real-Time, High-Frequency QRS Electrocardiograph (MSC- 23154), NASA Tech Briefs, Vol. 27, No. 7 (July 2003), pp. 26-28. To recapitulate, signals from standard electrocardiograph electrodes are preamplified, then digitized at a sampling rate of 1,000 Hz, then analyzed by the software that detects R waves and QRS complexes and analyzes them from several perspectives. The software includes provisions for averaging signals over multiple beats and for special-purpose nonrecursive digital filters with specific low- and high-frequency cutoffs. These filters, applied to the averaged signal, effect a band-pass operation in the frequency range from 150 to 250 Hz. The output of the bandpass filter is the desired high-frequency QRS signal. Further processing is then performed in real time to obtain the beat-to-beat root mean square (RMS) voltage amplitude of the filtered signal, certain variations of the RMS voltage, and such standard measures as the heart rate and R-R interval at any given time. A key signal feature analyzed in the present method is the presence versus the absence of reduced-amplitude zones (RAZs). In terms that must be simplified for the sake of brevity, an RAZ comprises several cycles of a high-frequency QRS signal during which the amplitude of the high-frequency oscillation in a portion of the signal is abnormally low (see figure). A given signal sample exhibiting an interval of reduced amplitude may or may not be classified as an RAZ, depending on quantitative criteria regarding peaks and troughs within the reduced-amplitude portion of the high-frequency QRS signal. This analysis is performed in all 12 leads in real time
High-frequency ECG
The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire ventricular surface and were signal-averaged and filtered in the 30-250 Hz frequency range. The results showed that the decrease noted in the HF-QRS correlated linearly with the local conduction delay. The results suggest that HF-QRS is a potent indicator of disturbed local conduction. An alternative theory is that HF-QRS reflect the shape of the original electrocardiographic signal. Bennhagen et al showed that root mean square (RMS) voltage values of the depolarization signal correlate poorly with the signal amplitude but highly with the first and second derivatives, i.e. the velocity and the acceleration of the signal. It has also been suggested that the autonomic nervous system affects HF-QRS. For example, sitting up causes significant changes in HF-QRS in some leads compared to the supine position [Douglas et al., 2006]. Unpublished results indicate that familial dysautonomic patients (both vagal and sympathetic degeneration) have very little Reduced Amplitude Zones (RAZ) formation . Athletic individuals, especially elite athletes, who have vagally-mediated changes on the conventional ECG (i.e. early repolarization, bradycardia) have increased RAZ formation. Further electrophysiological studies are needed, however, to better understand the underlying mechanisms of HF-QRS. Several investigators have studied HF-QRS in different cardiac conditions, including acute myocardial ischemia and myocardial infarction (MI). However, in order for clinicians to confidently use HF-QRS as an adjunct to standard ECG, more knowledge about the characteristics of HF-QRS is needed
Predicting Motion Sickness During Parabolic Flight
Background: There are large individual differences in susceptibility to motion sickness. Attempts to predict who will become motion sick have had limited success. In the present study we examined gender differences in resting levels of salivary amylase and total protein, cardiac interbeat intervals (R-R intervals), and a sympathovagal index and evaluated their potential to correctly classify individuals into two motion sickness severity groups. Methods: Sixteen subjects (10 men and 6 women) flew 4 sets of 10 parabolas aboard NASA's KC-135 aircraft. Saliva samples for amylase and total protein were collected preflight on the day of the flight and motion sickness symptoms were recorded during each parabola. Cardiovascular parameters were collected in the supine position 1-5 days prior to the flight. Results: There were no significant gender differences in sickness severity or any of the other variables mentioned above. Discriminant analysis using salivary amylase, R-R intervals and the sympathovagal index produced a significant Wilks' lambda coefficient of 0.36, p= 0.006. The analysis correctly classified 87% of the subjects into the none-mild sickness or the moderate-severe sickness group. Conclusions: The linear combination of resting levels of salivary amylase, high frequency R-R interval levels, and a sympathovagal index may be useful in predicting motion sickness severity
Device and Method for Digital-To-Analog Transformations and Reconstructions of Multi-Channel Electrocardiograms
The present invention includes a method and apparatus for digital to analog conversion and reconstruction of multichannel electrocardiograms. The method may include receiving digital information representative of a plurality of independent signals, producing a plurality of analog outputs from said digital information wherein a first analog output is designated as a common reference, and imposing a predetermined voltage on a second analog output with respect to said common reference, which provides for a substantial recreation of the original independent signals. The apparatus may comprise a processor operable for receiving digital information representative of independent lead signals from a first ECG machine and digital to analog circuitry for substantially reproducing the original lead signals for analysis on a second ECG machine for convenient and efficient second opinions of cardiac data
Real-time, high frequency QRS electrocardiograph
Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time
Real-time, high frequency QRS electrocardiograph with reduced amplitude zone detection
Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as ''RAZs''. RAZs are displayed as ''go, no-go'' signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time
Reliability and Reproducibility of Advanced ECG Parameters in Month-to-Month and Year-to-Year Recordings in Healthy Subjects
Advanced resting ECG parameters such the spatial mean QRS-T angle and the QT variability index (QTVI) have important diagnostic and prognostic utility, but their reliability and reproducibility (R&R) are not well characterized. We hypothesized that the spatial QRS-T angle would have relatively higher R&R than parameters such as QTVI that are more responsive to transient changes in the autonomic nervous system. The R&R of several conventional and advanced ECG para-meters were studied via intraclass correlation coefficients (ICCs) and coefficients of variation (CVs) in: (1) 15 supine healthy subjects from month-to-month; (2) 27 supine healthy subjects from year-to-year; and (3) 25 subjects after transition from the supine to the seated posture. As hypothesized, for the spatial mean QRS-T angle and many conventional ECG parameters, ICCs we-re higher, and CVs lower than QTVI, suggesting that the former parameters are more reliable and reproducible
Real-Time, High-Frequency QRS Electrocardiograph
An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies <100 Hz, the ordinarily invisible components have amplitudes in the microvolt range and are characterized by frequencies from about 150 to about 250 Hz. Deviations of these high-frequency components from a normal pattern can be indicative of myocardial ischemia or myocardial infarctio
- …