809 research outputs found

    First test results from a high-resolution CdZnTe pixel detector with VLSI readout

    Get PDF
    We are developing a CdZnTe pixel detector with a custom low- noise analog VLSI readout for use in the High-Energy Focusing Telescope balloon experiment, as well as for future space astronomy applications. The goal of the program is to achieve good energy resolution (< 1 keV FWHM at 60 keV) and low threshold in a sensor with approximately 500 micrometers pixels. We have fabricated several prototype detector assemblies with 2 mm thick, 680 by 650 micrometers pitch CdZnTe pixel sensors indium bump bonded a VLSI readout chip developed at Caltech. Each readout circuit in the 8 X 8 prototype is matched to the detector pixel size, and contains a preamplifier, shaping amplifiers, and a peak stretcher/discriminator. In the first 8 X 8 prototype, we have demonstrated the low-noise preamplifier by routing the output signals off-chip for shaping and pulse-height analysis. Pulse height spectra obtained using a ^(241)Am source, collimated to illuminate a single pixel, show excellent energy resolution of 1.1 keV FWHM for the 60 keV line at room temperature. Line profiles are approximately Gaussian and dominated by electronic noise, however a small low energy tail is evident for the 60 keV line. We obtained slightly improved resolution of 0.9 keV FWHM at 60 keV by cooling the detector to 5 degree(s)C, near the expected balloon- flight operating temperature. Pulse height spectra obtained with the collimated source positioned between pixels show the effect of signal sharing for events occurring near the boundary. We are able to model the observed spectra using a Monte-Carlo simulation that includes the effects of photon interaction, charge transport and diffusion, pixel and collimator geometry, and electronic noise. By using the model to simulate the detector response to uncollimated radiation (including the effect of finite trigger threshold for reconstruction of the total energy of multi-pixel events), we find the energy resolution to be degraded by only 10% for full-face illumination, compared to the collimated case. The small value of the degradation is due directly to the low readout noise and amplifier threshold

    Properties of Pt Schottky Type Contacts On High-Resistivity CdZnTe Detectors

    Get PDF
    In this paper we present studies of the I-V characteristics of CdZnTe detectors with Pt contacts fabricated from high-resistivity single crystals grown by the high-pressure Brigman process. We have analyzed the experimental I-V curves using a model that approximates the CZT detector as a system consisting of a reversed Schottky contact in series with the bulk resistance. Least square fits to the experimental data yield 0.78-0.79 eV for the Pt-CZT Schottky barrier height, and <20 V for the voltage required to deplete a 2 mm thick CZT detector. We demonstrate that at high bias the thermionic current over the Schottky barrier, the height of which is reduced due to an interfacial layer between the contact and CZT material, controls the leakage current of the detectors. In many cases the dark current is not determined by the resistivity of the bulk material, but rather the properties of the contacts; namely by the interfacial layer between the contact and CZT material.Comment: 12 pages, 11 figure

    Ab-initio theory of NMR chemical shifts in solids and liquids

    Full text link
    We present a theory for the ab-initio computation of NMR chemical shifts (sigma) in condensed matter systems, using periodic boundary conditions. Our approach can be applied to periodic systems such as crystals, surfaces, or polymers and, with a super-cell technique, to non-periodic systems such as amorphous materials, liquids, or solids with defects. We have computed the hydrogen sigma for a set of free molecules, for an ionic crystal, LiH, and for a H-bonded crystal, HF, using density functional theory in the local density approximation. The results are in excellent agreement with experimental data.Comment: to appear in Physical Review Letter

    A preliminary investigation of norms and relationships for the Stern Fixation Test in the elementary school population

    Get PDF
    The Stern Fixation Test was investigated for its usefulness as a screening test for detecting visual problems associated with reading. Preliminary norms were established based on age and reading level, significant relationships between these norms and subject reading level for certain groups were found, and correlations between Stern Fixation Teat scores and the 21-point examination were found to be of low order. While the Stern Fixation Test cannot be expected to screen for all visual factors involved in reading, it can serve as a useful screening tool for many visual factors related to reading difficulties

    Investigation optimal contact geometry for CdZnTe pixel detectors

    Get PDF
    We are developing CdZnTe pixel detectors for use as focal plane sensors in astronomical hard X-ray telescopes. To optimize the spectral response and imaging performance, we are investigating the effect of contact geometry on charge collection. Specifically, we have studied contact designs with orthogonal thin strips placed between pixel contacts. We apply a negative bias on the grid with respect to the pixel potential to force charge to drift toward the contacts. The grid bias is selected to be just sufficient to avoid charge collection on the grid, while increasing the transverse electric field on the surface between contacts. In contrast to focusing electrodes designed to force field lines to terminate on the pixel contact, our approach allows us to overcome the effects of charge loss between the pixels without significant increase of the leakage current, improving the overall energy resolution of the detector. In this paper we describe the performance of a CdZnTe pixel detector containing a grid electrode, bonded to a custom low-noise VLSI readout. We discuss the advantages of this type of detector for high spectral resolution applications

    The Hot Interstellar Medium of Normal Elliptical Galaxies. I. A Chandra Gas Gallery and Comparison of X-ray and Optical Morphology

    Get PDF
    We present an X-ray analysis of 54 normal elliptical galaxies in the Chandra archive and isolate their hot gas component from the contaminating point source emission, allowing us to conduct, for the first time, a morphological analysis on the gas alone. A comparison with optical images and photometry shows that the hot gas morphology has surprisingly little in common with the shape of the stellar distribution. We observe no correlation between optical and X-ray ellipticities in the inner regions where stellar mass dominates over dark matter. A shallow correlation would be expected if the gas had settled into hydrostatic equilibrium with the gravitational potential. Instead, observed X-ray ellipticities exceed optical ellipticities in many cases. We exclude rotation as the dominant factor to produce the gas ellipticities. The gas appears disturbed, and hydrostatic equilibrium is the exception rather than the rule. Nearly all hydrostatic models can be ruled out at 99% confidence, based of their inability to reproduce the optical-X-ray correlation and large X-ray ellipticities. Hydrostatic models not excluded are those in which dark matter either dominates over stellar mass inside the inner half-light radius or has a prominently cigar-shaped distribution, both of which can be ruled out on other grounds. We conclude that, even for rather X-ray faint elliptical galaxies, the gas is at least so far out of equilibrium that it does not retain any information about the shape of the potential, and that X-ray derived radial mass profiles may be in error by factors of order unity.Comment: 20 Pages, 8 Figures (3 new), extended discussion, accepted to ApJ, high-resolution version with additional online-only figures available at http://www.phy.ohiou.edu/~diehl/Publications

    First test results from a high-resolution CdZnTe pixel detector with VLSI readout

    Get PDF
    We are developing a CdZnTe pixel detector with a custom low- noise analog VLSI readout for use in the High-Energy Focusing Telescope balloon experiment, as well as for future space astronomy applications. The goal of the program is to achieve good energy resolution (< 1 keV FWHM at 60 keV) and low threshold in a sensor with approximately 500 micrometers pixels. We have fabricated several prototype detector assemblies with 2 mm thick, 680 by 650 micrometers pitch CdZnTe pixel sensors indium bump bonded a VLSI readout chip developed at Caltech. Each readout circuit in the 8 X 8 prototype is matched to the detector pixel size, and contains a preamplifier, shaping amplifiers, and a peak stretcher/discriminator. In the first 8 X 8 prototype, we have demonstrated the low-noise preamplifier by routing the output signals off-chip for shaping and pulse-height analysis. Pulse height spectra obtained using a ^(241)Am source, collimated to illuminate a single pixel, show excellent energy resolution of 1.1 keV FWHM for the 60 keV line at room temperature. Line profiles are approximately Gaussian and dominated by electronic noise, however a small low energy tail is evident for the 60 keV line. We obtained slightly improved resolution of 0.9 keV FWHM at 60 keV by cooling the detector to 5 degree(s)C, near the expected balloon- flight operating temperature. Pulse height spectra obtained with the collimated source positioned between pixels show the effect of signal sharing for events occurring near the boundary. We are able to model the observed spectra using a Monte-Carlo simulation that includes the effects of photon interaction, charge transport and diffusion, pixel and collimator geometry, and electronic noise. By using the model to simulate the detector response to uncollimated radiation (including the effect of finite trigger threshold for reconstruction of the total energy of multi-pixel events), we find the energy resolution to be degraded by only 10% for full-face illumination, compared to the collimated case. The small value of the degradation is due directly to the low readout noise and amplifier threshold

    Modifying Hofstee standard setting for assessments that vary in difficulty, and to determine boundaries for different levels of achievement.

    Get PDF
    BACKGROUND: Fixed mark grade boundaries for non-linear assessment scales fail to account for variations in assessment difficulty. Where assessment difficulty varies more than ability of successive cohorts or the quality of the teaching, anchoring grade boundaries to median cohort performance should provide an effective method for setting standards. METHODS: This study investigated the use of a modified Hofstee (MH) method for setting unsatisfactory/satisfactory and satisfactory/excellent grade boundaries for multiple choice question-style assessments, adjusted using the cohort median to obviate the effect of subjective judgements and provision of grade quotas. RESULTS: Outcomes for the MH method were compared with formula scoring/correction for guessing (FS/CFG) for 11 assessments, indicating that there were no significant differences between MH and FS/CFG in either the effective unsatisfactory/satisfactory grade boundary or the proportion of unsatisfactory graded candidates (p > 0.05). However the boundary for excellent performance was significantly higher for MH (p < 0.01), and the proportion of candidates returned as excellent was significantly lower (p < 0.01). MH also generated performance profiles and pass marks that were not significantly different from those given by the Ebel method of criterion-referenced standard setting. CONCLUSIONS: This supports MH as an objective model for calculating variable grade boundaries, adjusted for test difficulty. Furthermore, it easily creates boundaries for unsatisfactory/satisfactory and satisfactory/excellent performance that are protected against grade inflation. It could be implemented as a stand-alone method of standard setting, or as part of the post-examination analysis of results for assessments for which pre-examination criterion-referenced standard setting is employed

    Hard x-ray optics for the HEFT balloon-borne payload: prototype design and status

    Get PDF
    We report on the current status and performance of prototype hard x-ray optics we are producing for use on the high energy focusing telescope (HEFT) experiment. The baseline substrates are thermally formed glass mirrors that are overcoated with multilayers to provide good performance throughout the 20-80 keV bandpass. Progress made in the thermal forming process as well as in the multilayer performance has allowed production of optics that meet or exceed all HEFT requirements. We present metrology on the substrates and result from x-ray characterization. A novel mounting scheme for the individual telescope shells is currently being tested. If successful the mounting technique will produce a monolithic, extremely stiff and robust optic

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo
    • …
    corecore