18 research outputs found
Promoting hearing and cognitive health in audiologic rehabilitation for the well-being of older adults
Objective: With our aging population, an increasing number of older adults with hearing loss have cognitive decline. Hearing care practitioners have an important role in supporting healthy aging and should be knowledgeable about cognitive decline and associated management strategies to maximize successful hearing intervention.
Methods: A review of current research and expert opinion.
Results: This article outlines the association between hearing loss and cognitive decline/dementia, hypothesized mechanisms underlying this, and considers current research into the effects of hearing intervention on cognitive decline. Cognition into old age, cognitive impairment, dementia, and how to recognize cognitive decline that is not part of normal aging are described. Screening of older asymptomatic adults for cognitive decline and practical suggestions for the delivery of person-centered hearing care are discussed. Holistic management goals, personhood, and person-centered care in hearing care management are considered for older adults with normal cognitive aging through to dementia. A case study illustrates important skills and potential management methods. Prevention strategies for managing hearing and cognitive health and function through to older age, and strategies to maximize successful hearing aid use are provided.
Conclusion: This article provides evidence-based recommendations for hearing care professionals supporting older clients to maximize well-being through the cognitive trajectory
Altered emotion processing circuits during the anticipation of emotional stimuli in women with borderline personality disorder
Borderline personality disorder (BPD) is associated with disturbed emotion processing, typically encompassing intense and fast emotional reactions toward affective stimuli. In this study, we were interested in whether emotional dysregulation in BPD occurs not only during the perception of emotional stimuli, but also during the anticipation of upcoming emotional pictures in the absence of concrete stimuli. Eighteen female patients with a diagnosis of BPD and 18 healthy control subjects anticipated cued visual stimuli with prior known emotional valence or prior unknown emotional content during functional magnetic resonance imaging. Brain activity during the anticipation of emotional stimuli was compared between both groups. When anticipating negative pictures, BPD patients demonstrated less signal change in the left dorsal anterior cingulate cortex (dACC) and left middle cingulate cortex (MCC), and enhanced activations in the left pregenual ACC, left posterior cingulate cortex (PCC) as well as in left visual cortical areas including the lingual gyrus. During the anticipation of ambiguously announced stimuli, brain activity in BPD was also reduced in the left MCC extending into the medial and bilateral dorsolateral prefrontal cortex. Results point out that deficient recruitment of brain areas related to cognitive-emotional interaction already during the anticipation phase may add to emotional dysregulation in BPD. Stronger activation of the PCC could correspond to an increased autobiographical reference in BPD. Moreover, increased preparatory visual activity during negative anticipation may contribute to hypersensitivity toward emotional cues in this disorder
Real-time Neurofeedback Using Functional MRI Could Improve Down-Regulation of Amygdala Activity During Emotional Stimulation: A Proof-of-Concept Study
The amygdala is a central target of emotion regulation. It is overactive and dysregulated in affective and anxiety disorders and amygdala activity normalizes with successful therapy of the symptoms. However, a considerable percentage of patients do not reach remission within acceptable duration of treatment. The amygdala could therefore represent a promising target for real-time functional magnetic resonance imaging (rtfMRI) neurofeedback. rtfMRI neurofeedback directly improves the voluntary regulation of localized brain activity. At present, most rtfMRI neurofeedback studies have trained participants to increase activity of a target, i.e. up-regulation. However, in the case of the amygdala, down-regulation is supposedly more clinically relevant. Therefore, we developed a task that trained participants to down-regulate activity of the right amygdala while being confronted with amygdala stimulation, i.e. negative emotional faces. The activity in the functionally-defined region was used as online visual feedback in six healthy subjects instructed to minimize this signal using reality checking as emotion regulation strategy. Over a period of four training sessions, participants significantly increased down-regulation of the right amygdala compared to a passive viewing condition to control for habilitation effects. This result supports the concept of using rtfMRI neurofeedback training to control brain activity during relevant stimulation, specifically in the case of emotion, and has implications towards clinical treatment of emotional disorders
Baseline perfusion alterations due to acute application of quetiapine and pramipexole in healthy adults
BACKGROUND The dopaminergic system is implicated in many mental processes and neuropsychiatric disorders. Pharmacologically, drugs with dopamine receptor antagonistic and agonistic effects are used, but their effects on functional brain metabolism are not well known. METHODS In this randomized cross-over, placebo-controlled and rater-blinded study, 25 healthy adults received an acute dose placebo substance (starch), quetiapine (dopamine receptor antagonist), or pramipexole (dopamine agonist of the non-ergoline class) 1 hour before the experiment. Background-suppressed 2D pseudo-continuous arterial spin labeling was used to examine whole-brain baseline cerebral blood flow (CBF) differences induced by the three substances. RESULTS We found that quetiapine reduced perfusion in the occipital (early visual areas) and bilateral cerebellar cortex relative to placebo. In contrast, quetiapine enhanced CBF (relative to placebo) in the striatal system (putamen and caudate nucleus) but also in the supplementary motor area (SMA), insular-, prefrontal- as well as in the pre- and postcentral cortex. Pramipexole increased CBF compared to placebo in the caudate nucleus, putamen, middle frontal, SMA, and brainstem (substantia nigra), but reduced CBF in the posterior thalamus, cerebellum, and visual areas. Pramipexole administration resulted in stronger CBF relative to quetiapine in the hypothalamus, cerebellum and substantia nigra. CONCLUSIONS Our results indicate that quetiapine and pramipexole differentially modulate regional baseline CBF. Both substances act on the dopaminergic system, although affecting distinct regions. Quetiapine altered dopaminergic function in frontal, striatal, and motor regions. In contrast, pramipexole affected CBF of the nigrostriatal (striatum and substantia nigra) dopaminergic, but less the fronto-insular system
Baseline Perfusion Alterations Due to Acute Application of Quetiapine and Pramipexole in Healthy Adults
Abstract Background: The dopaminergic system is implicated in many mental processes and neuropsychiatric disorders. Pharmacologically, drugs with dopamine receptor antagonistic and agonistic effects are used, but their effects on functional brain metabolism are not well known. Methods: In this randomized crossover, placebo-controlled, and rater-blinded study, 25 healthy adults received an acute dose placebo substance (starch), quetiapine (dopamine receptor antagonist), or pramipexole (dopamine agonist of the nonergoline class) 1 hour before the experiment. Background-suppressed 2D pseudo-continuous arterial spin labeling was used to examine whole-brain baseline cerebral blood flow differences induced by the 3 substances. Results: We found that quetiapine reduced perfusion in the occipital (early visual areas) and bilateral cerebellar cortex relative to placebo. In contrast, quetiapine enhanced cerebral blood flow (relative to placebo) in the striatal system (putamen and caudate nucleus) but also in the supplementary motor area, insular-, prefrontal- as well as in the pre- and postcentral cortex. Pramipexole increased cerebral blood flow compared with placebo in the caudate nucleus, putamen, middle frontal, supplementary motor area, and brainstem (substantia nigra), but reduced cerebral blood flow in the posterior thalamus, cerebellum, and visual areas. Pramipexole administration resulted in stronger cerebral blood flow relative to quetiapine in the hypothalamus, cerebellum, and substantia nigra. Conclusions: Our results indicate that quetiapine and pramipexole differentially modulate regional baseline cerebral blood flow. Both substances act on the dopaminergic system, although they affect distinct regions. Quetiapine altered dopaminergic function in frontal, striatal, and motor regions. In contrast, pramipexole affected cerebral blood flow of the nigrostriatal (striatum and substantia nigra) dopaminergic, but less the fronto-insular system
Real-time neurofeedback using functional MRI could improve down-regulation of amygdala activity during emotional stimulation: a proof-of-concept study
The amygdala is a central target of emotion regulation. It is overactive and dysregulated in affective and anxiety disorders and amygdala activity normalizes with successful therapy of the symptoms. However, a considerable percentage of patients do not reach remission within acceptable duration of treatment. The amygdala could therefore represent a promising target for real-time functional magnetic resonance imaging (rtfMRI) neurofeedback. rtfMRI neurofeedback directly improves the voluntary regulation of localized brain activity. At present, most rtfMRI neurofeedback studies have trained participants to increase activity of a target, i.e. up-regulation. However, in the case of the amygdala, down-regulation is supposedly more clinically relevant. Therefore, we developed a task that trained participants to down-regulate activity of the right amygdala while being confronted with amygdala stimulation, i.e. negative emotional faces. The activity in the functionally-defined region was used as online visual feedback in six healthy subjects instructed to minimize this signal using reality checking as emotion regulation strategy. Over a period of four training sessions, participants significantly increased down-regulation of the right amygdala compared to a passive viewing condition to control for habilitation effects. This result supports the concept of using rtfMRI neurofeedback training to control brain activity during relevant stimulation, specifically in the case of emotion, and has implications towards clinical treatment of emotional disorders
Neural circuits of emotion regulation: a comparison of mindfulness-based and cognitive reappraisal strategies
Dealing with one's emotions is a core skill in everyday life. Effective cognitive control strategies have been shown to be neurobiologically represented in prefrontal structures regulating limbic regions. In addition to cognitive strategies, mindfulness-associated methods are increasingly applied in psychotherapy. We compared the neurobiological mechanisms of these two strategies, i.e. cognitive reappraisal and mindfulness, during both the cued expectation and perception of negative and potentially negative emotional pictures. Fifty-three healthy participants were examined with functional magnetic resonance imaging (47 participants included in analysis). Twenty-four subjects applied mindfulness, 23 used cognitive reappraisal. On the neurofunctional level, both strategies were associated with comparable activity of the medial prefrontal cortex and the amygdala. When expecting negative versus neutral stimuli, the mindfulness group showed stronger activations in ventro- and dorsolateral prefrontal cortex, supramarginal gyrus as well as in the left insula. During the perception of negative versus neutral stimuli, the two groups only differed in an increased activity in the caudate in the cognitive group. Altogether, both strategies recruited overlapping brain regions known to be involved in emotion regulation. This result suggests that common neural circuits are involved in the emotion regulation by mindfulness-based and cognitive reappraisal strategies. Identifying differential activations being associated with the two strategies in this study might be one step towards a better understanding of differential mechanisms of change underlying frequently used psychotherapeutic interventions