391 research outputs found

    50 Ways To Save Your Heart

    Get PDF
    If you want to place a winning bet, bet that heart disease will kill you. Yes, you. Why? Because heart disease kills more people in the U.S. than any other disease, including cancer. We want to reverse that bet and save your life. How? You need to read this book and follow its simple recommendations. Many people have already jumped on the bandwagon and defied the probability of dying from heart disease. This book gives you the easy tools to do just that. Prevention costs practically nothing and you don’t have to give up anything. You only have to eat and be smart about saving your heart.https://digitalrepository.unm.edu/hsc_facbookdisplay/1000/thumbnail.jp

    THE CANADA-FRANCE REDSHIFT SURVEY IX: HST Imaging of High-Redshift Field Galaxies

    Full text link
    HST B and I images are presented of 32 CFRS galaxies with secure redshifts in the range 0.5 < z < 1.2. These galaxies exhibit the same range of morphological types as seen locally, i.e., ellipticals, spirals and irregulars. The galaxies look far less regular in the BB images (rest-frame ultraviolet) than at longer wavelengths, underlining the fact that optical images of galaxies at still higher redshift should be interpreted with caution. Quantitative analyses of the galaxies yield disk sizes, bulge fractions, and colors for each component. At these redshifts, galaxy disks show clear evidence for surface brightness evolution. The mean rest-frame central surface brightness of the disks of normal late-type galaxies is mu_{AB}(B)=20.2 \pm 0.25 mag arcsec^{-2}, about 1.2 mag brighter than the Freeman (1970) value. Some degree of peculiarity is measurable in 10 (30%) of the galaxies and 4 (13%) show clear signs of interaction/mergers. There are 9 galaxies (30%) dominated by blue compact components. These components, which appear to be related to star formation, occur most often in peculiar/asymmetric galaxies (some of which appear to be interacting), but a few are in otherwise normal galaxies. Thus, of the galaxies bluer than present-day Sb, one-third are "blue nucleated galaxies", and half are late-type galaxies with disks which are significantly brighter than normal galaxies at z=0. Taken together, these two effects must be responsible for much of the observed evolution of the luminosity function of blue galaxies.Comment: uuencoded compressed postscript, 8 pages, 1 table + 5 figures in a separate part. Also available at http://www.astro.utoronto.ca/~lilly/CFRS/ . Accepted for publication in ApJ Letter

    The Spatial and Kinematic Distributions of Cluster Galaxies in a LCDM Universe -- Comparison with Observations

    Get PDF
    We combine dissipationless N-body simulations and semi-analytic models of galaxy formation to study the spatial and kinematic distributions of cluster galaxies in a LCDM cosmology. We investigate how the star formation rates, colours and morphologies of galaxies vary as a function of distance from the cluster centre and compare our results with the CNOC1 survey of galaxies from 15 X-ray luminous clusters in the redshift range 0.18 to 0.55. In our model, gas no longer cools onto galaxies after they fall into the cluster and their star formation rates decline on timescales of 1-2 Gyr. Galaxies in cluster cores have lower star formation rates and redder colours than galaxies in the outer regions because they were accreted earlier. Our colour and star formation gradients agree with those those derived from the data. The difference in velocity dispersions between red and blue galaxies observed in the CNOC1 clusters is also well reproduced by the model. We assume that the morphologies of cluster galaxies are determined solely by their merging histories. Morphology gradients in clusters arise naturally, with the fraction of bulge- dominated galaxies highest in cluster cores. We compare these gradients with the CNOC1 data and find excellent agreement for bulge-dominated galaxies. The simulated clusters contain too few galaxies of intermediate bulge-to-disk ratio, suggesting that additional processes may influence the morphological evolution of disk-dominated galaxies in clusters. Although the properties of the cluster galaxies in our model agree extremely well with the data, the same is not true of field galaxies. Both the star formation rates and the colours of bright field galaxies appear to evolve much more strongly from redshift 0.2 to 0.4 in the CNOC1 field sample than in our simulations.Comment: 17 pages, sumitted to MNRAS. Simulation outputs, halo catalogs, merger trees and galaxy catalogs are now available at http://www.mpa-garching.mpg.de/GIF

    Evolution of Cluster Ellipticals at 0.2 < z < 1.2 from Hubble Space Telescope Imaging

    Get PDF
    Two-dimensional surface photometry derived from Hubble Space Telescope imaging is presented for a sample of 225 early-type galaxies (assumed to be cluster members) in the fields of 9 clusters at redshifts 0.17<z<1.210.17 < z < 1.21. The 94 luminous ellipticals (MAB(B)<20M_{AB}(B)<-20; selected by morphology alone with no reference to color) form tight sequences in the size-luminosity plane. The position of these sequences shifts, on average, with redshift so that an object of a given size at z=0.55 is brighter by ΔM(B)=0.57±0.13\Delta M(B)=-0.57 \pm 0.13 mag than its counterpart (measured with the same techniques) in nearby clusters. At z=0.9 the shift is ΔM(B)=0.96±0.22\Delta M(B)=-0.96 \pm 0.22 mag. If the relation between size and luminosity is universal so that the local cluster galaxies represent the evolutionary endpoints of those at high redshift, and if the size-luminosity relation is not modified by dynamical processes then this population of galaxies has undergone significant luminosity evolution since z=1 consistent with expectations based on models of passively evolving, old stellar populations.Comment: 7 pages, 3 figures, and 1 Tabl

    Discovery of a New Quadruple Lens HST 1411+5211

    Get PDF
    Gravitational lensing is an important tool for probing the mass distribution of galaxies. In this letter we report the discovery of a new quadruple lens HST 1411+5211 found in archived WFPC2 images of the galaxy cluster CL140933+5226. If the galaxy is a cluster member then its redshift is z=0.46z=0.46. The images of the source appear unresolved in the WFC implying that the source is a quasar. We have modeled the lens as both a single galaxy and a galaxy plus a cluster. The latter model yields excellent fits to the image positions along with reasonable parameters for the galaxy and cluster making HST 1411+5211 a likely gravitational lens. Determination of the source redshift and confirmation of the lens redshift would allow us to put strong constraints on the mass distribution of the lensing galaxy.Comment: 11 pages including 1 postscript figure, aastex. Accepted to the ApJL. Also available from: http://www.astro.lsa.umich.edu:80/users/philf/www/papers/list.htm

    The Gravitational Lens CFRS03.1077

    Get PDF
    An exquisite gravitational arc with a radius of 2.1" has been discovered around the z = 0.938 field elliptical galaxy CFRS03.1077 during HST observations of Canada-France Redshift Survey (CFRS) fields. Spectroscopic observations of the arc show that the redshift of the resolved lensed galaxy is z = 2.941. This gravitational lens-source system is well-fitted using the position angle and ellipticity derived from the visible matter distribution and an isothermal mass profile with a mass corresponding to sigma =387+-5 km/s. Surprisingly, given the evidence for passive evolution of elliptical galaxies, this is in good agreement with an estimate based on the fundamental plane for z = 0 ellipticals. This, perhaps, indicates that this galaxy has not shared in the significant evolution observed for average elliptical galaxies at z ~ 1. A second elliptical galaxy with similar luminosity from the CFRS survey, CFRS 14.1311 at z=0.807, is also a lens but in this case the lens model gives a much smaller mass-to-light ratio, i.e., it appears to confirm the expected evolution. This suggests that this pair of field elliptical galaxies may have very different evolutionary histories, a significant result if confirmed. Clearly, CFRS03.1077 demonstrates that these "Einstein rings" are powerful probes of high redshift galaxies.Comment: 11 pages, 5 figures, accepted by Ap.

    Evaluation of a Hypervisor-Based Smart Controller for Industry 4.0 Functions in Manufacturing

    Get PDF

    Catalog of Galaxy Morphology in Four Rich Clusters: Luminosity Evolution of Disk Galaxies at 0.33<z<0.83

    Full text link
    Hubble Space Telescope (HST) imaging of four rich, X-ray luminous, galaxy clusters (0.33<z<0.83) is used to produce quantitative morphological measurements for galaxies in their fields. Catalogs of these measurements are presented for 1642 galaxies brighter than F814W(AB)=23.0 . Galaxy luminosity profiles are fitted with three models: exponential disk, de Vaucouleurs bulge, and a disk-plus-bulge hybrid model. The best fit is selected and produces a quantitative assessment of the morphology of each galaxy: the principal parameters derived being B/T, the ratio of bulge to total luminosity, the scale lengths and half-light radii, axial ratios, position angles and surface brightnesses of each component. Cluster membership is determined using a statistical correction for field galaxy contamination, and a mass normalization factor (mass within boundaries of the observed fields) is derived for each cluster. In the present paper, this catalog of measurements is used to investigate the luminosity evolution of disk galaxies in the rich-cluster environment. Examination of the relations between disk scale-length and central surface brightness suggests, under the assumption that these clusters represent a family who share a common evolutionary history and are simply observed at different ages, that there is a dramatic change in the properties of the small disks (h < 2 kpc). This change is best characterized as a change in surface brightness by about 1.5 magnitude between z=0.3 and z=0.8 with brighter disks at higher redshifts.Comment: 53 pages, including 13 figures and 7 tables. Accepted for publication in the Astrophysical Journal Supplement Serie
    corecore