433 research outputs found

    Modeling of Spatial Uncertainties in the Magnetic Reluctivity

    Full text link
    In this paper a computationally efficient approach is suggested for the stochastic modeling of an inhomogeneous reluctivity of magnetic materials. These materials can be part of electrical machines, such as a single phase transformer (a benchmark example that is considered in this paper). The approach is based on the Karhunen-Lo\`{e}ve expansion. The stochastic model is further used to study the statistics of the self inductance of the primary coil as a quantity of interest.Comment: submitted to COMPE

    Multigrid-reduction-in-time for Eddy Current problems

    Full text link
    Parallel-in-time methods have shown success for reducing the simulation time of many time-dependent problems. Here, we consider applying the multigrid-reduction-in-time (MGRIT) algorithm to a voltage-driven eddy current model problem.Comment: Contribution from GAMM 2019 conferenc

    ParaExp using Leapfrog as Integrator for High-Frequency Electromagnetic Simulations

    Full text link
    Recently, ParaExp was proposed for the time integration of linear hyperbolic problems. It splits the time interval of interest into sub-intervals and computes the solution on each sub-interval in parallel. The overall solution is decomposed into a particular solution defined on each sub-interval with zero initial conditions and a homogeneous solution propagated by the matrix exponential applied to the initial conditions. The efficiency of the method depends on fast approximations of this matrix exponential based on recent results from numerical linear algebra. This paper deals with the application of ParaExp in combination with Leapfrog to electromagnetic wave problems in time-domain. Numerical tests are carried out for a simple toy problem and a realistic spiral inductor model discretized by the Finite Integration Technique.Comment: Corrected typos. arXiv admin note: text overlap with arXiv:1607.0036

    GPU Accelerated Explicit Time Integration Methods for Electro-Quasistatic Fields

    Full text link
    Electro-quasistatic field problems involving nonlinear materials are commonly discretized in space using finite elements. In this paper, it is proposed to solve the resulting system of ordinary differential equations by an explicit Runge-Kutta-Chebyshev time-integration scheme. This mitigates the need for Newton-Raphson iterations, as they are necessary within fully implicit time integration schemes. However, the electro-quasistatic system of ordinary differential equations has a Laplace-type mass matrix such that parts of the explicit time-integration scheme remain implicit. An iterative solver with constant preconditioner is shown to efficiently solve the resulting multiple right-hand side problem. This approach allows an efficient parallel implementation on a system featuring multiple graphic processing units.Comment: 4 pages, 5 figure

    Multiple Right-Hand Side Techniques in Semi-Explicit Time Integration Methods for Transient Eddy Current Problems

    Full text link
    The spatially discretized magnetic vector potential formulation of magnetoquasistatic field problems is transformed from an infinitely stiff differential algebraic equation system into a finitely stiff ordinary differential equation (ODE) system by application of a generalized Schur complement for nonconducting parts. The ODE can be integrated in time using explicit time integration schemes, e.g. the explicit Euler method. This requires the repeated evaluation of a pseudo-inverse of the discrete curl-curl matrix in nonconducting material by the preconditioned conjugate gradient (PCG) method which forms a multiple right-hand side problem. The subspace projection extrapolation method and proper orthogonal decomposition are compared for the computation of suitable start vectors in each time step for the PCG method which reduce the number of iterations and the overall computational costs.Comment: 4 pages, 5 figure

    Parallel-In-Time Simulation of Eddy Current Problems Using Parareal

    Full text link
    In this contribution the usage of the Parareal method is proposed for the time-parallel solution of the eddy current problem. The method is adapted to the particular challenges of the problem that are related to the differential algebraic character due to non-conducting regions. It is shown how the necessary modification can be automatically incorporated by using a suitable time stepping method. The paper closes with a first demonstration of a simulation of a realistic four-pole induction machine model using Parareal

    Determination of Bond Wire Failure Probabilities in Microelectronic Packages

    Full text link
    This work deals with the computation of industry-relevant bond wire failure probabilities in microelectronic packages. Under operating conditions, a package is subject to Joule heating that can lead to electrothermally induced failures. Manufacturing tolerances result, e.g., in uncertain bond wire geometries that often induce very small failure probabilities requiring a high number of Monte Carlo (MC) samples to be computed. Therefore, a hybrid MC sampling scheme that combines the use of an expensive computer model with a cheap surrogate is used. The fraction of surrogate evaluations is maximized using an iterative procedure, yielding accurate results at reduced cost. Moreover, the scheme is non-intrusive, i.e., existing code can be reused. The algorithm is used to compute the failure probability for an example package and the computational savings are assessed by performing a surrogate efficiency study.Comment: submitted to Therminic 2016, available at http://ieeexplore.ieee.org/document/7748645

    Waveform Relaxation for the Computational Homogenization of Multiscale Magnetoquasistatic Problems

    Full text link
    This paper proposes the application of the waveform relaxation method to the homogenization of multiscale magnetoquasistatic problems. In the monolithic heterogeneous multiscale method, the nonlinear macroscale problem is solved using the Newton--Raphson scheme. The resolution of many mesoscale problems per Gauss point allows to compute the homogenized constitutive law and its derivative by finite differences. In the proposed approach, the macroscale problem and the mesoscale problems are weakly coupled and solved separately using the finite element method on time intervals for several waveform relaxation iterations. The exchange of information between both problems is still carried out using the heterogeneous multiscale method. However, the partial derivatives can now be evaluated exactly by solving only one mesoscale problem per Gauss point.Comment: submitted to JC

    A Structural Analysis of Field/Circuit Coupled Problems Based on a Generalised Circuit Element

    Full text link
    In some applications there arises the need of a spatially distributed description of a physical quantity inside a device coupled to a circuit. Then, the in-space discretised system of partial differential equations is coupled to the system of equations describing the circuit (Modified Nodal Analysis) which yields a system of Differential Algebraic Equations (DAEs). This paper deals with the differential index analysis of such coupled systems. For that, a new generalised inductance-like element is defined. The index of the DAEs obtained from a circuit containing such an element is then related to the topological characteristics of the circuit's underlying graph. Field/circuit coupling is performed when circuits are simulated containing elements described by Maxwell's equations. The index of such systems with two different types of magnetoquasistatic formulations (A* and T-Ω\Omega) is then deduced by showing that the spatial discretisations in both cases lead to an inductance-like element

    Isogeometric Boundary Elements in Electromagnetism: Rigorous Analysis, Fast Methods, and Examples

    Full text link
    We present a new approach to three-dimensional electromagnetic scattering problems via fast isogeometric boundary element methods. Starting with an investigation of the theoretical setting around the electric field integral equation within the isogeometric framework, we show existence, uniqueness, and quasi-optimality of the isogeometric approach. For a fast and efficient computation, we then introduce and analyze an interpolation-based fast multipole method tailored to the isogeometric setting, which admits competitive algorithmic and complexity properties. This is followed by a series of numerical examples of industrial scope, together with a detailed presentation and interpretation of the results
    • …
    corecore