180 research outputs found

    Drug Side Effect Prediction with Deep Learning Molecular Embedding in a Graph-of-Graphs Domain

    Get PDF
    Drug side effects (DSEs), or adverse drug reactions (ADRs), constitute an important health risk, given the approximately 197,000 annual DSE deaths in Europe alone. Therefore, during the drug development process, DSE detection is of utmost importance, and the occurrence of ADRs prevents many candidate molecules from going through clinical trials. Thus, early prediction of DSEs has the potential to massively reduce drug development times and costs. In this work, data are represented in a non-euclidean manner, in the form of a graph-of-graphs domain. In such a domain, structures of molecule are represented by molecular graphs, each of which becomes a node in the higher-level graph. In the latter, nodes stand for drugs and genes, and arcs represent their relationships. This relational nature represents an important novelty for the DSE prediction task, and it is directly used during the prediction. For this purpose, the MolecularGNN model is proposed. This new classifier is based on graph neural networks, a connectionist model capable of processing data in the form of graphs. The approach represents an improvement over a previous method, called DruGNN, as it is also capable of extracting information from the graph-based molecular structures, producing a task-based neural fingerprint (NF) of the molecule which is adapted to the specific task. The architecture has been compared with other GNN models in terms of performance, showing that the proposed approach is very promising

    A multi-stage GAN for multi-organ chest X-ray image generation and segmentation

    Get PDF
    Multi-organ segmentation of X-ray images is of fundamental importance for computer aided diagnosis systems. However, the most advanced semantic segmentation methods rely on deep learning and require a huge amount of labeled images, which are rarely available due to both the high cost of human resources and the time required for labeling. In this paper, we present a novel multi-stage generation algorithm based on Generative Adversarial Networks (GANs) that can produce synthetic images along with their semantic labels and can be used for data augmentation. The main feature of the method is that, unlike other approaches, generation occurs in several stages, which simplifies the procedure and allows it to be used on very small datasets. The method has been evaluated on the segmentation of chest radiographic images, showing promising results. The multistage approach achieves state-of-the-art and, when very few images are used to train the GANs, outperforms the corresponding single-stage approach

    On the approximation capability of GNNs in node classification/regression tasks

    Get PDF
    Graph neural networks (GNNs) are a broad class of connectionist models for graph processing. Recent studies have shown that GNNs can approximate any function on graphs, modulo the equivalence relation on graphs defined by theWeisfeiler-Lehman (WL) test. However, these results suffer from some limitations, both because they were derived using the Stone-Weierstrass theorem — which is existential in nature — and because they assume that the target function to be approximated must be continuous. Furthermore, all current results are dedicated to graph classification/regression tasks, where the GNN must produce a single output for the whole graph, while also node classification/regression problems, in which an output is returned for each node, are very common. In this paper, we propose an alternative way to demonstrate the approximation capability of GNNs that overcomes these limitations. Indeed, we show that GNNs are universal approximators in probability for node classification/regression tasks, as they can approximate any measurable function that satisfies the 1-WL-equivalence on nodes. The proposed theoretical framework allows the approximation of generic discontinuous target functions and also suggests the GNN architecture that can reach a desired approximation. In addition, we provide a bound on the number of the GNN layers required to achieve the desired degree of approximation, namely 2r − 1, where r is the maximum number of nodes for the graphs in the domain

    A novel stepwise micro-TESE approach in non obstructive azoospermia

    Get PDF
    Background: The purpose of the study was to investigate whether micro-TESE can improve sperm retrieval rate (SRR) compared to conventional single TESE biopsy on the same testicle or to contralateral multiple TESE, by employing a novel stepwise micro-TESE approach in a population of poor prognosis patients with non-obstructive azoospermia (NOA). Methods: Sixty-four poor prognosis NOA men undergoing surgical testicular sperm retrieval for ICSI, from March 2007 to April 2013, were included in this study. Patients inclusion criteria were a) previous unsuccessful TESE, b) unfavorable histology (SCOS, MA, sclerahyalinosis), c) Klinefelter syndrome. We employed a stepwise micro-TESE consisting three-steps: 1) single conventional TESE biopsy; 2) micro-TESE on the same testis; 3) contralateral multiple TESE. Results: SRR was 28.1 % (18/64). Sperm was obtained in both the initial single conventional TESE and in the following micro-TESE. The positive or negative sperm retrieval was further confirmed by a contralateral multiple TESE, when performed. No significant pre-operative predictors of sperm retrieval, including patients’ age, previous negative TESE or serological markers (LH, FSH, inhibin B), were observed at univariate or multivariate analysis. Micro-TESE (step 2) did not improve sperm retrieval as compared to single TESE biopsy on the same testicle (step 1) or multiple contralateral TESE (step 3). Conclusions: Stepwise micro-TESE could represent an optimal approach for sperm retrieval in NOA men. In our view, it should be offered to NOA patients in order to gradually increase surgical invasiveness, when necessary. Stepwise micro-TESE might also reduce the costs, time and efforts involved in surgery

    Testicular histopathology, semen analysis and FSH, predictive value of sperm retrieval: supportive counseling in case of reoperation after testicular sperm extraction (TESE)

    Get PDF
    Background: To provide indicators for the likelihood of sperm retrieval in patients undergoing testicular sperm extraction is a major issue in the management of male infertility by TESE. The aim of our study was to determine the impact of different parameters, including testicular histopathology, on sperm retrieval in case of reoperation in patients undergoing testicular sperm extraction. Methods: We retrospectively analyzed 486 patients who underwent sperm extraction for intracytoplasmic sperm injection and testicular biopsy. Histology was classified into: normal spermatogenesis; hypospermatogenesis (reduction in the number of normal spermatogenetic cells); maturation arrest (absence of the later stages of spermatogenesis); and Sertoli cell only (absence of germ cells). Semen analysis and serum FSH, LH and testosterone were measured. Results: Four hundred thirty patients had non obstructive azoospermia, 53 severe oligozoospermia and 3 necrozoospermia. There were 307 (63%) successful sperm retrieval. Higher testicular volume, lower levels of FSH, and better histological features were predictive for sperm retrieval. The same parameters and younger age were predictive factors for shorter time for sperm recovery. After multivariable analysis, younger age, better semen parameters, better histological features and lower values of FSH remained predictive for shorter time for sperm retrieval while better semen and histology remained predictive factors for successful sperm retrieval. The predictive capacity of a score obtained by summing the points assigned for selected predictors (1 point for Sertoli cell only, 0.33 points for azoospermia, 0.004 points for each FSH mIU/ml) gave an area under the ROC curve of 0.843. Conclusions: This model can help the practitioner with counseling infertile men by reliably predicting the chance of obtaining spermatozoa with testicular sperm extraction when a repeat attempt is planne

    analysis of brain nmr images for age estimation with deep learning

    Get PDF
    Abstract During the last decade, deep learning and Convolutional Neural Networks (CNNs) have produced a devastating impact on computer vision, yielding exceptional results on a variety of problems, including analysis of medical images. Recently, these techniques have been extended to 3D images with the downside of a large increase in the computational load. In particular, state-of-the-art CNNs have been used for brain Nuclear Magnetic Resonance (NMR) imaging, with the aim of estimating the patients' age. In fact, a large discrepancy between the real and the estimated age is a clear alarm for the onset of neurodegenerative diseases, such as some types of early dementia and Alzheimer's disease. In this paper, we propose an effective alternative to 3D convolutions that guarantees a significant reduction of the computational requirements for this kind of analysis. The proposed architectures achieve comparable results with the competitor 3D methods, requiring only a fraction of the training time and GPU memory

    Weisfeiler–Lehman goes dynamic: An analysis of the expressive power of Graph Neural Networks for attributed and dynamic graphs

    Get PDF
    Graph Neural Networks (GNNs) are a large class of relational models for graph processing. Recent theoretical studies on the expressive power of GNNs have focused on two issues. On the one hand, it has been proven that GNNs are as powerful as the Weisfeiler–Lehman test (1-WL) in their ability to distinguish graphs. Moreover, it has been shown that the equivalence enforced by 1-WL equals unfolding equivalence. On the other hand, GNNs turned out to be universal approximators on graphs modulo the constraints enforced by 1-WL/unfolding equivalence. However, these results only apply to Static Attributed Undirected Homogeneous Graphs (SAUHG) with node attributes. In contrast, real-life applications often involve a much larger variety of graph types. In this paper, we conduct a theoretical analysis of the expressive power of GNNs for two other graph domains that are particularly interesting in practical applications, namely dynamic graphs and SAUGHs with edge attributes. Dynamic graphs are widely used in modern applications; hence, the study of the expressive capability of GNNs in this domain is essential for practical reasons and, in addition, it requires a new analyzing approach due to the difference in the architecture of dynamic GNNs compared to static ones. On the other hand, the examination of SAUHGs is of particular relevance since they act as a standard form for all graph types: it has been shown that all graph types can be transformed without loss of information to SAUHGs with both attributes on nodes and edges. This paper considers generic GNN models and appropriate 1-WL tests for those domains. Then, the known results on the expressive power of GNNs are extended to the mentioned domains: it is proven that GNNs have the same capability as the 1-WL test, the 1-WL equivalence equals unfolding equivalence and that GNNs are universal approximators modulo 1-WL/unfolding equivalence. Moreover, the proof of the approximation capability is mostly constructive and allows us to deduce hints on the architecture of GNNs that can achieve the desired approximation

    Weisfeiler--Lehman goes Dynamic: An Analysis of the Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs

    Full text link
    Graph Neural Networks (GNNs) are a large class of relational models for graph processing. Recent theoretical studies on the expressive power of GNNs have focused on two issues. On the one hand, it has been proven that GNNs are as powerful as the Weisfeiler-Lehman test (1-WL) in their ability to distinguish graphs. Moreover, it has been shown that the equivalence enforced by 1-WL equals unfolding equivalence. On the other hand, GNNs turned out to be universal approximators on graphs modulo the constraints enforced by 1-WL/unfolding equivalence. However, these results only apply to Static Undirected Homogeneous Graphs with node attributes. In contrast, real-life applications often involve a variety of graph properties, such as, e.g., dynamics or node and edge attributes. In this paper, we conduct a theoretical analysis of the expressive power of GNNs for these two graph types that are particularly of interest. Dynamic graphs are widely used in modern applications, and its theoretical analysis requires new approaches. The attributed type acts as a standard form for all graph types since it has been shown that all graph types can be transformed without loss to Static Undirected Homogeneous Graphs with attributes on nodes and edges (SAUHG). The study considers generic GNN models and proposes appropriate 1-WL tests for those domains. Then, the results on the expressive power of GNNs are extended by proving that GNNs have the same capability as the 1-WL test in distinguishing dynamic and attributed graphs, the 1-WL equivalence equals unfolding equivalence and that GNNs are universal approximators modulo 1-WL/unfolding equivalence. Moreover, the proof of the approximation capability holds for SAUHGs, which include most of those used in practical applications, and it is constructive in nature allowing to deduce hints on the architecture of GNNs that can achieve the desired accuracy
    • …
    corecore