2 research outputs found

    A Versatile Approach to Organic Photovoltaics Evaluation Using White Light Pulse and Microwave Conductivity

    No full text
    State-of-the-art low band gap conjugated polymers have been investigated for application in organic photovoltaic cells (OPVs) to achieve efficient conversion of the wide spectrum of sunlight into electricity. A remarkable improvement in power conversion efficiency (PCE) has been achieved through the use of innovative materials and device structures. However, a reliable technique for the rapid screening of the materials and processes is a prerequisite toward faster development in this area. Here we report the realization of such a versatile evaluation technique for bulk heterojunction OPVs by the combination of time-resolved microwave conductivity (TRMC) and submicrosecond white light pulse from a Xe-flash lamp. Xe-flash TRMC allows examination of the OPV active layer without requiring fabrication of the actual device. The transient photoconductivity maxima, involving information on generation efficiency, mobility, and lifetime of charge carriers in four well-known low band gap polymers blended with phenyl-C<sub>61</sub>-butyric acid methyl ester (PCBM), were confirmed to universally correlate with the PCE divided by the open circuit voltage (PCE/<i>V</i><sub>oc</sub>), offering a facile way to predict photovoltaic performance without device fabrication

    Beyond Fullerenes: Design of Nonfullerene Acceptors for Efficient Organic Photovoltaics

    No full text
    New electron-acceptor materials are long sought to overcome the small photovoltage, high-cost, poor photochemical stability, and other limitations of fullerene-based organic photovoltaics. However, all known nonfullerene acceptors have so far shown inferior photovoltaic properties compared to fullerene benchmark [6,6]-phenyl-C<sub>60</sub>-butyric acid methyl ester (PC<sub>60</sub>BM), and there are as yet no established design principles for realizing improved materials. Herein we report a design strategy that has produced a novel multichromophoric, large size, nonplanar three-dimensional (3D) organic molecule, DBFI-T, whose π-conjugated framework occupies space comparable to an aggregate of 9 [C<sub>60</sub>]-fullerene molecules. Comparative studies of DBFI-T with its planar monomeric analogue (BFI-P2) and PC<sub>60</sub>BM in bulk heterojunction (BHJ) solar cells, by using a common thiazolothiazole-dithienosilole copolymer donor (PSEHTT), showed that DBFI-T has superior charge photogeneration and photovoltaic properties; PSEHTT:DBFI-T solar cells combined a high short-circuit current (10.14 mA/cm<sup>2</sup>) with a high open-circuit voltage (0.86 V) to give a power conversion efficiency of 5.0%. The external quantum efficiency spectrum of PSEHTT:DBFI-T devices had peaks of 60–65% in the 380–620 nm range, demonstrating that both hole transfer from photoexcited DBFI-T to PSEHTT and electron transfer from photoexcited PSEHTT to DBFI-T contribute substantially to charge photogeneration. The superior charge photogeneration and electron-accepting properties of DBFI-T were further confirmed by independent Xenon-flash time-resolved microwave conductivity measurements, which correctly predict the relative magnitudes of the conversion efficiencies of the BHJ solar cells: PSEHTT:DBFI-T > PSEHTT:PC<sub>60</sub>BM > PSEHTT:BFI-P2. The results demonstrate that the large size, multichromophoric, nonplanar 3D molecular design is a promising approach to more efficient organic photovoltaic materials
    corecore