24 research outputs found
Specific ion channels contribute to key elements of pathology during secondary degeneration following neurotrauma
Background: Following partial injury to the central nervous system, cells beyond the initial injury site undergo secondary degeneration, exacerbating loss of neurons, compact myelin and function. Changes in Ca 2+ flux are associated with metabolic and structural changes, but it is not yet clear how flux through specific ion channels contributes to the various pathologies. Here, partial optic nerve transection in adult female rats was used to model secondary degeneration. Treatment with combinations of three ion channel inhibitors was used as a tool to investigate which elements of oxidative and structural damage related to long term functional outcomes. The inhibitors employed were the voltage gated Ca 2+ channel inhibitor Lomerizine (Lom), the Ca 2+ permeable AMPA receptor inhibitor YM872 and the P2X 7 receptor inhibitor oxATP. Results: Following partial optic nerve transection, hyper-phosphorylation of Tau and acetylated tubulin immunoreactivity were increased, and Nogo-A immunoreactivity was decreased, indicating that axonal changes occurred acutely. All combinations of ion channel inhibitors reduced hyper-phosphorylation of Tau and increased Nogo-A immunoreactivity at day 3 after injury. However, only Lom/oxATP or all three inhibitors in combination significantly reduced acetylated tubulin immunoreactivity. Most combinations of ion channel inhibitors were effective in restoring the lengths of the paranode and the paranodal gap, indicative of the length of the node of Ranvier, following injury. However, only all three inhibitors in combination restored to normal Ankyrin G length at the node of Ranvier. Similarly, HNE immunoreactivity and loss of oligodendrocyte precursor cells were only limited by treatment with all three ion channel inhibitors in combination. Conclusions: Data indicate that inhibiting any of a range of ion channels preserves certain elements of axon and node structure and limits some oxidative damage following injury, whereas ionic flux through all three channels must be inhibited to prevent lipid peroxidation and preserve Ankyrin G distribution and OPCs
Fatigue damage in cemented hip prostheses
none4noneCristofolini L.; Savigni P.; Erani P.; Viceconti M.Cristofolini L.; Savigni P.; Erani P.; Viceconti M
Influence of the preparing conditions on the physicochemical characteristics of glasses for thick film hybrid microelectronics
Seven batches of a high-lead glass were used for the preparation of RuO2-based thick film resistors. Investigation of their electrical properties showed a lack of reproducibility of results whose origin was related to changes of the physicochemical properties of the glassy matrix. A systematic investigation of the glass batches, both in form of frit powders and screen printed and fired layers, was carried out with several spectroscopies to detect changes in composition and structure. The spectroscopic methods included x-ray Energy Dispersive Fluorescence (EDS), Scanning Electron Microscopy (SEM), Atomic Absorption (AA), diffuse optical reflection of the powders and specular reflection of the layers, optical transmission, and other complementary methods. The dissolution of Al, due to interaction between the glasses and the alumina substrate, as well as the diffusivity and solubility of Ag due to interaction with the Ag-bearing terminations were measured. The results demonstrated that, apart from small compositional differences, the various batches were characterized by differences in residual stresses, redox reactions, and ''microstructure.'' The latter was responsible for very notable differences in the optical properties of the glasses, which in turn are closely related with the difference in atomic solubility and diffusivity. Optical spectroscopies have been found to be a suitable means for testing reproducible preparation methods of glass frits for thick-film hybrid microelectronics
Pre-clinical assessment of the long-term endurance of cemented hip stems. Part 2: In-vitro and ex-vivo fatigue damage of the cement mantle
Fatigue damage in the cement mantle surrounding hip stems has been studied in the past. However, so far no quantitative method has been validated for assessing ex-vivo damage and for predicting the in-vitro risk of cement fracture. This work presents a method for measuring cement damage; the cement mantle was sliced and sections were inspected with dye penetrants and an optical microscope. Cracks were counted, measured, and classified by type in each region of the cement mantle. Statistical indicators (in total and per unit volume of cement) were proposed that allow quantitative comparison. The method was first validated on two implant types with known clinical success rate, which were tested in vitro using a physiological loading profile (described in Part 1 of this work). The most relevant indicators were able to detect statistical differences between the two designs. Retrieved cement mantles (the same design as one of the in-vitro stems) from revision surgery were also processed with the same inspection method. Excellent qualitative and quantitative agreement was found between the in-vitro generated fatigue damage and the cracking pattern found in the ex-vivo retrieved cement mantles. This demonstrated the effectiveness of the cement inspection protocol and provided a further validation to the in-vitro testing method. \ua9 IMechE 2007