8,301 research outputs found

    Ultraviolet absorption by interstellar gas at large distances from the galactic plane

    Get PDF
    Eighteen high dispersion International Ultraviolet Exploration spectra of 6 stars in the large magellanic cloud (LMC) 3 stars in the small magellanic cloud (SMC) and 2 foreground stars were studied. Fourteen spectra cover the wavelengths lambda 1150-2000 A and 4 cover lambda 1900-3200 A. All the Magellanic Cloud star spectra exhibit exceedingly strong interstellar absorption lines due to a wide range of ionization stages at galactic velocities and at velocities associated with the LMC or SMC. The analysis is restricted to the Milky Way absorption features. Toward the LMC stars, the strong interstellar lines have a positive velocity extension, which exceeds the extension recorded toward the SMC stars. The most straightforward interpretation of these velocity extensions is obtained by assuming that gas at large distances away from the plane of the galaxy participates in the rotation of the galaxy as found in the galactic disk

    A survey of interstellar HI from L alpha absorption measurements 2

    Get PDF
    The Copernicus satellite surveyed the spectral region near L alpha to obtain column densities of interstellar HI toward 100 stars. The distance to 10 stars exceeds 2 kpc and 34 stars lie beyond 1 kpc. Stars with color excess E(B-V) up to 0.5 mag are observed. The value of the mean ratio of total neutral hydrogen to color excess was found to equal 5.8 x 10 to the 21st power atoms per (sq cm x mag). For stars with accurate E(B-V), the deviations from this mean are generally less than a factor of 1.5. A notable exception is the dark cloud star, rho Oph. A reduction in visual reddening efficiency for the grains that are larger than normal in the rho Oph dark cloud probably explains this result. The conversion of atomic hydrogen into molecular form in dense clouds was observed in the gas to E(B-V) correlation plots. The best estimate for the mean total gas density for clouds and the intercloud medium, as a whole, in the solar neighborhood and in the plane of the galaxy is 1.15 atoms per cu. cm; those for the atomic gas and molecular gas alone are 0.86 atoms per cu cm and 0.143 molecules per cu cm respectively. For the intercloud medium, where molecular hydrogen is a negligible fraction of the total gas, atomic gas density was found to equal 0.16 atoms per cu cm with a Gaussian scale height perpendicular to the plane of about 350 pc, as derived from high latitude stars

    O VI and Multicomponent H I Absorption Associated with a Galaxy Group in the Direction of PG0953+415: Physical Conditions and Baryonic Content

    Get PDF
    We report the discovery of an O VI absorption system at z(abs) = 0.14232 in a high resolution FUV spectrum of PG0953+415 obtained with the Space Telescope Imaging Spectrograph (STIS). Both lines of the O VI 1032, 1038 doublet and multicomponent H I Lya absorption are detected, but the N V doublet and the strong lines of C II and Si III are not apparent. We examine the ionization mechanism of the O VI absorber and find that while theoretical considerations favor collisional ionization, it is difficult to observationally rule out photoionization. If the absorber is collisionally ionized, it may not be in equilibrium due to the rapid cooling of gas in the appropriate temperature range. Non-equilibrium collisionally ionized models are shown to be consistent with the observations. A WIYN survey of galaxy redshifts near the sight line has revealed a galaxy at a projected distance of 395 kpc separated by ~130 km/s from this absorber, and three additional galaxies are found within 130 km/s of this redshift with projected separations ranging from 1.0 Mpc to 3.0 Mpc. Combining the STIS observations of PG0953+415 with previous high S/N GHRS observations of H1821+643, we derive a large number of O VI absorbers per unit redshift, dN/dz ~20. We use this sample to obtain a first estimate of the cosmological mass density of the O VI systems at z ~ 0. If further observations confirm the large dN/dz derived for the O VI systems, then these absorbers trace a significant reservoir of baryonic matter at low redshift.Comment: Accepted for publication in Ap.J., vol. 542 (Oct. 10, 2000

    Angle of Repose and Angle of Marginal Stability: Molecular Dyanmics of Granular Particles

    Full text link
    We present an implementation of realistic static friction in molecular dynamics (MD) simulations of granular particles. In our model, to break contacts between two particles, one has to apply a finite amount of force, determined by the Coulomb criterion. Using a two dimensional model, we show that piles generated by avalanches have a {\it finite} angle of repose θR\theta_R (finite slopes). Furthermore, these piles are stable under tilting by an angle smaller than a non-zero tilting angle θT\theta_T, showing that θR\theta_R is different from the angle of marginal stability θMS\theta_{MS}, which is the maximum angle of stable piles. These measured angles are compared to a theoretical approximation. We also measure θMS\theta_{MS} by continuously adding particles on the top of a stable pile.Comment: 14 pages, Plain Te
    • …
    corecore