15 research outputs found

    Structural Sorting and Oxygen Doping of Semiconducting Single-Walled Carbon Nanotubes

    Get PDF
    Existing growth methods produce single-walled carbon nanotubes (SWCNTs) with a range of structures and electronic properties, but many potential applications require pure nanotube samples. Density gradient ultracentrifugation (DGU) has recently emerged as a technique for sorting as-grown mixtures of single-walled nanotubes into their distinct ( n,m ) structural forms, but this approach has been limited to samples containing only a small number of nanotube structures, and has often required repeated DGU processing. For the first time, it has been shown that the use of tailored nonlinear density gradient ultracentrifugation (NDGU) can significantly improve DGU separations. This new sorting process readily separated highly polydisperse samples of SWCNTs grown by the HiPco method in a single step to give fractions enriched in any of ten different ( n,m ) species. In addition, minor variants of the method allowed separation of the minor-image isomers (enantiomers) of seven ( n,m ) species. Optimization of this new approach was aided by the development of instrumentation that spectroscopically mapped nanotube contents inside undisturbed centrifuge tubes. Besides, sorted nanotube samples enabled the discovery of novel oxygen-doped SWCNTs with remarkable photophysical properties. Modified nanotube samples were produced using mild oxidation of SWCNTs with ozone followed by a photochemical conversion step that induced well-defined changes in emissive properties. As demonstrated for a set of ten separated SWCNT ( n,m ) structures, chemically altered nanotubes possess slightly lower band gap energies with correspondingly longer photoluminescence wavelengths. Treated samples showed distinct, structure-specific near-infrared fluorescence at wavelengths 10 to 15% longer than the pristine semiconducting SWCNTs. Quantum chemical modeling suggests that dopant sites harvest light energy absorbed in undoped nanotube regions by trapping mobile excitons. The oxygen-doped SWCNTs are much easier to detect and image in biological specimen than pristine SWCNTs because they give stronger near-IR emission and do not absorb at the shifted emission wavelength. This novel modification of SWCNT properties may lead to new optical and electronic applications, as it provides a way to change optical band gaps in whole nanotubes or in selected sections

    Is the Formation of Poly-CO2 Stabilized by Lewis Base Moieties in N- and S-Doped Porous Carbon?

    No full text
    The polymerization of CO2 by Lewis basic moieties has been recently proposed to account for the high adsorption ability of N and S-doped porous carbon materials formed from the pyrolysis of sulfur or nitrogen containing polymers in the presence of KOH. Ab initio calculations performed on the ideal CO2 tetramer complex LB-(CO2)4 (LB = NH3, H2O, H2S) showed no propensity for stabilization. A weak association is observed using Lewis acid species bound to oxygen (LA = H+, AlF3, AlH3, B4O6); however, the combination of a Lewis acid and base does allow for the formation of polymerized CO2 (i.e., LB-C(O)O-[C(O)O]n-C(O)O-LA). While the presence of acid moieties in porous carbon is well known, and borate species are experimentally observed in KOH activated porous carbon materials, the low stability of the oligomers calculated herein, is insufficient to explain the reported poly-CO2

    Films of Bare Single-Walled Carbon Nanotubes from Superacids with Tailored Electronic and Photoluminescence Properties

    No full text
    The use of single-walled carbon nanotubes (SWCNTs) in fabricating macroscopic devices requires addressing the challenges of nanotube individualization and organization in the desired functional architectures. Previous success in depositing bare SWCNTs from chlorosulfonic acid onto silicon oxide microporous and mesoporous nanoparticles has motivated this study of their deposition onto fused silica substrates. A facile dip-coating method is reported that produces thin homogeneous films in which the carbon nanotubes are not covered by surfactants or shortened by sonication. Photophysical, electrical, chemical, and morphological properties of these SWCNT films have been characterized. When prepared at low densities, the films exhibit near-IR photoluminescence from individualized SWCNTs, whereas when prepared at high densities the films behave as transparent conductors. Sheet resistance of 471 ohm/sq has been achieved with film transmittance of ∼ 86%

    Structure-Dependent Thermal Defunctionalization of Single-Walled Carbon Nanotubes

    No full text
    Covalent sidewall functionalization of single-walled carbon nanotubes (SWCNTs) is an important tool for tailoring their properties for research purposes and applications. In this study, SWCNT samples were first functionalized by reductive alkylation using metallic lithium and 1-iodododecane in liquid ammonia. Samples of the alkyl-functionalized SWCNTs were then pyrolyzed under an inert atmosphere at selected temperatures between 100 and 500 °C to remove the addends. The extent of defunctionalization was assessed using a combination of thermogravimetric analysis, Raman measurements of the D, G, and radial breathing bands, absorption spectroscopy of the first- and second-order van Hove peaks, and near-IR fluorescence spectroscopy of (n,m)-specific emission bands. These measurements all indicate a substantial dependence of defunctionalization rate on nanotube diameter, with larger diameter nanotubes showing more facile loss of addends. The effective activation energy for defunctionalization is estimated to be a factor of ∼1.44 greater for 0.76 nm diameter nanotubes as compared to those with 1.24 nm diameter. The experimental findings also reveal the quantitative variation with functionalization density of the Raman D/G intensity ratio and the relative near-IR fluorescence intensity. Pyrolyzed samples show spectroscopic properties that are equivalent to those of SWCNTs prior to functionalization. The strong structure dependence of the defunctionalization rate suggests an approach for scalable diameter sorting of mixed SWCNT samples

    Apparatus for Scalable Functionalization of Single-Walled Carbon Nanotubes via the Billups-Birch Reduction

    No full text
    A prototype design of a reactor for scalable functionalization of SWCNTs by the reaction of alkyl halides with Billups-Birch reduced SWCNTs is described. The Hauge apparatus is designed to allow for the safe handling of all the reagents and products under an inert atmosphere at controlled temperatures. The extent of reaction of Li/NH3 solution with the SWCNTs is measured in-situ by solution conduction, while homogenous mixing is ensured by the use of a homogenizer, and thermocouple are placed at different heights within the reactor flask. Addition of an alkyl halide yield alkyl-functionalized SWCNTs, which may be isolated by solvent extraction leaving a solid sample that is readily purified by hydrocarbon extraction. As an example, reaction of SWCNT/Li/NH3 with 1-iododecane yields dodecane-functionalized SWCNTs (C12-SWCNTs), which have been characterized by TG/DTA, XPS, and Raman spectroscopy. Sample extraction during the reaction allows for probing of the rate of the reaction in order to determine the end point of the reaction, which for C12-SWCNTs (at −78 °C) is 30 min

    Directly Measured Optical Absorption Cross Sections for Structure-Selected Single-Walled Carbon Nanotubes

    No full text
    We have measured peak and spectrally integrated absolute absorption cross sections for the first (E<sub>11</sub>) and second (E<sub>22</sub>) optical transitions of seven semiconducting single-walled carbon nanotube (SWCNT) species in bulk suspensions. Species-specific concentrations were determined using short-wave IR fluorescence microscopy to directly count SWCNTs in a known sample volume. Measured cross sections per atom are inversely related to nanotube diameter. E<sub>11</sub> cross sections are larger for mod 1 species than for mod 2; the opposite is found for E<sub>22</sub>
    corecore