3,391 research outputs found

    Noise Tolerance under Risk Minimization

    Full text link
    In this paper we explore noise tolerant learning of classifiers. We formulate the problem as follows. We assume that there is an unobservable{\bf unobservable} training set which is noise-free. The actual training set given to the learning algorithm is obtained from this ideal data set by corrupting the class label of each example. The probability that the class label of an example is corrupted is a function of the feature vector of the example. This would account for most kinds of noisy data one encounters in practice. We say that a learning method is noise tolerant if the classifiers learnt with the ideal noise-free data and with noisy data, both have the same classification accuracy on the noise-free data. In this paper we analyze the noise tolerance properties of risk minimization (under different loss functions), which is a generic method for learning classifiers. We show that risk minimization under 0-1 loss function has impressive noise tolerance properties and that under squared error loss is tolerant only to uniform noise; risk minimization under other loss functions is not noise tolerant. We conclude the paper with some discussion on implications of these theoretical results

    Robust Loss Functions under Label Noise for Deep Neural Networks

    Full text link
    In many applications of classifier learning, training data suffers from label noise. Deep networks are learned using huge training data where the problem of noisy labels is particularly relevant. The current techniques proposed for learning deep networks under label noise focus on modifying the network architecture and on algorithms for estimating true labels from noisy labels. An alternate approach would be to look for loss functions that are inherently noise-tolerant. For binary classification there exist theoretical results on loss functions that are robust to label noise. In this paper, we provide some sufficient conditions on a loss function so that risk minimization under that loss function would be inherently tolerant to label noise for multiclass classification problems. These results generalize the existing results on noise-tolerant loss functions for binary classification. We study some of the widely used loss functions in deep networks and show that the loss function based on mean absolute value of error is inherently robust to label noise. Thus standard back propagation is enough to learn the true classifier even under label noise. Through experiments, we illustrate the robustness of risk minimization with such loss functions for learning neural networks.Comment: Appeared in AAAI 201
    corecore