3,391 research outputs found
Noise Tolerance under Risk Minimization
In this paper we explore noise tolerant learning of classifiers. We formulate
the problem as follows. We assume that there is an
training set which is noise-free. The actual training set given to the learning
algorithm is obtained from this ideal data set by corrupting the class label of
each example. The probability that the class label of an example is corrupted
is a function of the feature vector of the example. This would account for most
kinds of noisy data one encounters in practice. We say that a learning method
is noise tolerant if the classifiers learnt with the ideal noise-free data and
with noisy data, both have the same classification accuracy on the noise-free
data. In this paper we analyze the noise tolerance properties of risk
minimization (under different loss functions), which is a generic method for
learning classifiers. We show that risk minimization under 0-1 loss function
has impressive noise tolerance properties and that under squared error loss is
tolerant only to uniform noise; risk minimization under other loss functions is
not noise tolerant. We conclude the paper with some discussion on implications
of these theoretical results
Robust Loss Functions under Label Noise for Deep Neural Networks
In many applications of classifier learning, training data suffers from label
noise. Deep networks are learned using huge training data where the problem of
noisy labels is particularly relevant. The current techniques proposed for
learning deep networks under label noise focus on modifying the network
architecture and on algorithms for estimating true labels from noisy labels. An
alternate approach would be to look for loss functions that are inherently
noise-tolerant. For binary classification there exist theoretical results on
loss functions that are robust to label noise. In this paper, we provide some
sufficient conditions on a loss function so that risk minimization under that
loss function would be inherently tolerant to label noise for multiclass
classification problems. These results generalize the existing results on
noise-tolerant loss functions for binary classification. We study some of the
widely used loss functions in deep networks and show that the loss function
based on mean absolute value of error is inherently robust to label noise. Thus
standard back propagation is enough to learn the true classifier even under
label noise. Through experiments, we illustrate the robustness of risk
minimization with such loss functions for learning neural networks.Comment: Appeared in AAAI 201
- …