413 research outputs found

    Bethe anzats derivation of the Tracy-Widom distribution for one-dimensional directed polymers

    Full text link
    The distribution function of the free energy fluctuations in one-dimensional directed polymers with δ\delta-correlated random potential is studied by mapping the replicated problem to a many body quantum boson system with attractive interactions. Performing the summation over the entire spectrum of excited states the problem is reduced to the Fredholm determinant with the Airy kernel which is known to yield the Tracy-Widom distributionComment: 5 page

    Replica Bethe ansatz derivation of the Tracy-Widom distribution of the free energy fluctuations in one-dimensional directed polymers

    Full text link
    The distribution function of the free energy fluctuations in one-dimensional directed polymers with δ\delta-correlated random potential is studied by mapping the replicated problem to the NN-particle quantum boson system with attractive interactions. We find the full set of eigenfunctions and eigenvalues of this many-body system and perform the summation over the entire spectrum of excited states. It is shown that in the thermodynamic limit the problem is reduced to the Fredholm determinant with the Airy kernel yielding the universal Tracy-Widom distribution, which is known to describe the statistical properties of the Gaussian unitary ensemble as well as many other statistical systems.Comment: 23 page

    Current moments of 1D ASEP by duality

    Full text link
    We consider the exponential moments of integrated currents of 1D asymmetric simple exclusion process using the duality found by Sch\"utz. For the ASEP on the infinite lattice we show that the nnth moment is reduced to the problem of the ASEP with less than or equal to nn particles.Comment: 13 pages, no figur

    Construction of a matrix product stationary state from solutions of finite size system

    Full text link
    Stationary states of stochastic models, which have NN states per site, in matrix product form are considered. First we give a necessary condition for the existence of a finite MM-dimensional matrix product state for any N,M{N,M}. Second, we give a method to construct the matrices from the stationary states of small size system when the above condition and NMN\le M are satisfied. Third, the method by which one can check that the obtained matrices are valid for any system size is presented for the case where M=NM=N is satisfied. The application of our methods is explained using three examples: the asymmetric exclusion process, a model studied in [F. H. Jafarpour: J. Phys. A: Math. Gen. 36 (2003) 7497] and a hybrid of both of the models.Comment: 22 pages, no figure. Major changes: sec.3 was shortened; the list of references were changed. This is the final version, which will appear in J.Phys.

    Exact solution of a partially asymmetric exclusion model using a deformed oscillator algebra

    Full text link
    We study the partially asymmetric exclusion process with open boundaries. We generalise the matrix approach previously used to solve the special case of total asymmetry and derive exact expressions for the partition sum and currents valid for all values of the asymmetry parameter q. Due to the relationship between the matrix algebra and the q-deformed quantum harmonic oscillator algebra we find that q-Hermite polynomials, along with their orthogonality properties and generating functions, are of great utility. We employ two distinct sets of q-Hermite polynomials, one for q1. It turns out that these correspond to two distinct regimes: the previously studied case of forward bias (q1) where the boundaries support a current opposite in direction to the bulk bias. For the forward bias case we confirm the previously proposed phase diagram whereas the case of reverse bias produces a new phase in which the current decreases exponentially with system size.Comment: 27 pages LaTeX2e, 3 figures, includes new references and further comparison with related work. To appear in J. Phys.

    Power-law behavior in the power spectrum induced by Brownian motion of a domain wall

    Get PDF
    We show that Brownian motion of a one-dimensional domain wall in a large but finite system yields a ω3/2\omega^{-3/2} power spectrum. This is successfully applied to the totally asymmetric simple exclusion process (TASEP) with open boundaries. An excellent agreement between our theory and numerical results is obtained in a frequency range where the domain wall motion dominates and discreteness of the system is not effective.Comment: 4 pages, 4 figure

    Multiple Shocks in a Driven Diffusive System with Two Species of Particles

    Full text link
    A one-dimensional driven diffusive system with two types of particles and nearest neighbors interactions has been considered on a finite lattice with open boundaries. The particles can enter and leave the system from both ends of the lattice and there is also a probability for converting the particle type at the boundaries. We will show that on a special manifold in the parameters space multiple shocks evolve in the system for both species of particles which perform continuous time random walks on the lattice.Comment: 11 pages, 1 figure, accepted for publication in Physica
    corecore