2 research outputs found

    Association of variable number of tandem repeats (VNTR) and T941G polymorphism of monoamine oxidase (MAO-A) gene with aggression in Pakistani subjects

    Get PDF
    Background: Human behavioral traits are known to be significantly heritable. Certain individuals have a greater tendency of negative behavioral aspects including aggression. The quest to identify tunderlying genetic causes has led to identification of a number of genetic markers, one of them is the monoamine oxidase-A (MAO-A) gene. Objective: We aimed to genotype a variable number of tandem repeats (VNTRs) in the promoter region and a functional SNP within this gene (T941G, dbSNP ID: rs6323) in the recruited cohort of 482 subjects. Methods: After DNA isolation, genotyping was done by PCR-RFLP and the results were confirmed by sequencing. Results: For VNTRs, the results showed, highest frequency of 3.5 repeats in males and 4 repeats in females in the promoter region. The genotype frequencies for the SNP in cases were GG=16.3%, TG=20.6% and TT=63.1%, while in controls, the frequencies were GG=12.7%, TG=6.3%, and TT=81.0%. The allele frequencies were significantly different between cases and controls (p=0.015; OR=1.51; CI=1.085-2.102). Conclusion: The selected VNTR and SNP appeared to be significantly associated with aggression. These VNTRs and SNP have not been studied previously in the Pakistani population, hence they represent a unique ethnic group. These results, however, would have to be replicated in larger cohorts

    Study of variants associated with ventricular septal defects (VSDs) highlights the unique genetic structure of the Pakistani population

    No full text
    Abstract Background Ventricular septal defects (VSDs) are one of the leading causes of death due to cardiac anomalies during the first months of life. The prevalence of VSD in neonates is reported up to 4%. Despite the remarkable progress in medication, treatment and surgical procedure for VSDs, the genetic etiology of VSDs is still in infancy because of the complex genetic and environmental interactions. Methods Three hundred fifty subjects (200 VSD children and 150 healthy controls) were recruited from different pediatric cardiac units. Pediatric clinical and demographic data were collected. A total of six variants, rs1017 (ISL1), rs7240256 (NFATc1), rs36208048 (VEGF), variant of HEY2, rs11067075 (TBX5) and rs1801133 (MTHFR) genes were genotyped by tetra-ARMS PCR and PCR–RFLP methods. Results The results showed that in cases, the rs1017 (g.16138A > T) variant in the ISL1 gene has an allele frequency of 0.42 and 0.58 respectively for the T and A alleles, and 0.75 and 0.25 respectively in the controls. The frequencies of the AA, TA and TT genotypes were, 52%, 11% and 37% in cases versus 21%, 8% and 71% respectively in the controls. For the NFATc1 variant rs7240256, minor allele frequency (MAF) was 0.43 in cases while 0.23 in controls. For the variant in the VEGF gene, genotype frequencies were 0% (A), 32% (CA) and 68% (CC) in cases and 0.0%, 33% and 67% respectively in controls. The allele frequency of C and A were 0.84 and 0.16 in cases and 0.83 and 0.17 respectively in controls. The TBX5 polymorphism rs11067075 (g.51682G > T) had an allelic frequency of 0.44 and 0.56 respectively for T and G alleles in cases, versus 0.26 and 0.74 in the controls. We did not detect the presence of the HEY2 gene variant (g.126117350A > C) in our pediatric cohort. For the rs1801133 (g.14783C > T) variant in the MTHFR gene, the genotype frequencies were 25% (CC), 62% (CT) and 13% (TT) in cases, versus 88%, 10% and 2% in controls. The ISL1, NFATc1, TBX5 and MTHFR variants were found to be in association with VSD in the Pakistani pediatric cohort whilst the VEGF and HEY2 variants were completely absent in our cohort. Conclusion We propose that a wider programme of genetic screening of the Pakistani population for genetic markers in heart development genes would be helpful in reducing the risk of VSDs
    corecore