4 research outputs found

    CRISPR activation screen identifies TGFβ-associated PEG10 as a crucial tumor suppressor in Ewing sarcoma

    Full text link
    As the second most common pediatric bone and soft tissue tumor, Ewing sarcoma (ES) is an aggressive disease with a pathognomonic chromosomal translocation t(11;22) resulting in expression of EWS-FLI1, an "undruggable" fusion protein acting as transcriptional modulator. EWS-FLI1 rewires the protein expression in cancer cells by activating and repressing a multitude of genes. The role and contribution of most repressed genes remains unknown to date. To address this, we established a CRISPR activation system in clonal SKNMC cell lines and interrogated a custom focused library covering 871 genes repressed by EWS-FLI1. Among the hits several members of the TGFβ pathway were identified, where PEG10 emerged as prime candidate due to its strong antiproliferative effect. Mechanistic investigations revealed that PEG10 overexpression caused cellular dropout via induction of cell death. Furthermore, non-canonical TGFβ pathways such as RAF/MEK/ERK, MKK/JNK, MKK/P38, known to lead to apoptosis or autophagy, were highly activated upon PEG10 overexpression. Our study sheds new light onto the contribution of TGFβ signalling pathway repression to ES tumorigenesis and suggest that its re-activation might constitute a novel therapeutic strategy

    Combined Inhibition of Epigenetic Readers and Transcription Initiation Targets the EWS-ETS Transcriptional Program in Ewing Sarcoma

    Get PDF
    BACKGROUND Previously, we used inhibitors blocking BET bromodomain binding proteins (BRDs) in Ewing sarcoma (EwS) and observed that long term treatment resulted in the development of resistance. Here, we analyze the possible interaction of BRD4 with cyclin-dependent kinase (CDK) 9. METHODS Co-immunoprecipitation experiments (CoIP) to characterize BRD4 interaction and functional consequences of inhibiting transcriptional elongation were assessed using drugs targeting of BRD4 or CDK9, either alone or in combination. RESULTS CoIP revealed an interaction of BRD4 with EWS-FLI1 and CDK9 in EwS. Treatment of EwS cells with CDKI-73, a specific CDK9 inhibitor (CDK9i), induced a rapid downregulation of EWS-FLI1 expression and block of contact-dependent growth. CDKI-73 induced apoptosis in EwS, as depicted by cleavage of Caspase 7 (CASP7), PARP and increased CASP3 activity, similar to JQ1. Microarray analysis following CDKI-73 treatment uncovered a transcriptional program that was only partially comparable to BRD inhibition. Strikingly, combined treatment of EwS with BRD- and CDK9-inhibitors re-sensitized cells, and was overall more effective than individual drugs not only in vitro but also in a preclinical mouse model in vivo. CONCLUSION Treatment with BRD inhibitors in combination with CDK9i offers a new treatment option that significantly blocks the pathognomonic EWS-ETS transcriptional program and malignant phenotype of EwS
    corecore