39 research outputs found

    Advanced modelling of time domain electromagnetic data with updated hydrogeological interpretations

    Get PDF
    Several countries have acquired, over the past decades, large amounts of area covering Airborne Electromagnetic data. Contribution of airborne geophysics has dramatically increased for both groundwater resource mapping and management proving how those systems are appropriate for large-scale and efficient groundwater surveying. We start with processing and inversion of two AEM dataset from two different systems collected over the Spiritwood Valley Aquifer area, Manitoba, Canada respectively, the AeroTEM III (commissioned by the Geological Survey of Canada in 2010) and the “Full waveform VTEM” dataset, collected and tested over the same survey area, during the fall 2011. We demonstrate that in the presence of multiple datasets, either AEM and ground data, due processing, inversion, post-processing, data integration and data calibration is the proper approach capable of providing reliable and consistent resistivity models. Our approach can be of interest to many end users, ranging from Geological Surveys, Universities to Private Companies, which are often proprietary of large geophysical databases to be interpreted for geological and\or hydrogeological purposes. In this study we deeply investigate the role of integration of several complimentary types of geophysical data collected over the same survey area. We show that data integration can improve inversions, reduce ambiguity and deliver high resolution results. We further attempt to use the final, most reliable output resistivity models as a solid basis for building a knowledge-driven 3D geological voxel-based model. A voxel approach allows a quantitative understanding of the hydrogeological setting of the area, and it can be further used to estimate the aquifers volumes (i.e. potential amount of groundwater resources) as well as hydrogeological flow model prediction. In addition, we investigated the impact of an AEM dataset towards hydrogeological mapping and 3D hydrogeological modeling, comparing it to having only a ground based TEM dataset and\or to having only boreholes data

    Shallow subsurface imaging of the Piano di Pezza active normal fault (central Italy) using high-resolution refraction and electrical resistivity tomography coupled with time-domain electromagnetic data

    Get PDF
    The Piano di Pezza fault (PPF) is the north-westernmost segment of the >20 km long Ovindoli-Pezza active normal fault-system (central Italy). Although existing paleoseismic data document high vertical Holocene slip rates (~1 mm/yr) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still unknown. We investigated the shallow subsurface of a key section of the PPF using seismic and electrical resistivity tomography coupled with time-domain electromagnetic measurements (TDEM). We provide 2-D Vp and resistivity images showing details of the fault structure and the geometry of the shallow basin infill down to 35-40 m depth. We can estimate the dip and the Holocene vertical displacement of the master fault. TDEM measurements in the fault hangingwall indicate that the pre-Quaternary carbonate basement may be found at ~90-100 m depth

    Geometry and evolution of a fault-controlled Quaternary basin by means of TDEM and single-station ambient vibration surveys: The example of the 2009 L'Aquila earthquake area, central Italy

    Get PDF
    We applied a joint survey approach integrating time domain electromagnetic soundings and single-station ambient vibration surveys in the Middle Aterno Valley (MAV), an intermontane basin in central Italy and the locus of the 2009 L’Aquila earthquake. By imaging the buried interface between the infilling deposits and the top of the pre-Quaternary bedrock, we reveal the 3-D basin geometry and gain insights into the long-term basin evolution. We reconstruct a complex subsurface architecture, characterized by three main depocenters separated by thresholds. Basin infill thickness varies from ~200–300m in the north to more than 450m to the southeast. Our subsurface model indicates a strong structural control on the architecture of the basin and highlights that the MAV experienced considerable modifications in its configuration over time. The buried shape of the MAV suggests a recent and still ongoing predominant tectonic control by the NW-SE trending Paganica-San Demetrio Fault System (PSDFS), which crosscuts older ~ENE and NNE trending extensional faults. Furthermore, we postulate that the present-day arrangement of the PSDFS is the result of the linkage of two previously isolated fault segments. We provide constraints on the location of the southeastern boundary of the PSDFS, defining an overall ~19 km long fault system characterized by a considerable seismogenetic potential and a maximum expected magnitude larger than M6.5. This study emphasizes the benefit of combining two easily deployable geophysical methods for reconstructing the 3-D geometry of a tectonically controlled basin. Our joint approach provided us with a consistent match between these two independent estimations of the basin substratum depth within 15%.Published2236–22597T. Struttura della Terra e geodinamica2TR. Ricostruzione e modellazione della struttura crostaleJCR Journa

    Indagini geofisiche e geochimiche di un sinkhole in formazione nell’area di Guidonia (Lazio)

    Get PDF
    The Plio-Quaternary Acque Albule Basin is already known for the occurrence of sinkholes; since the spring 2014, it has been ongoing the study of an active subsidence process, which formed a depressed area near the Guidonia village. During the last year, the phenomenon has become more intense giving rise to two collapses along the eastern rim of the depression. Thus, geophysical and geogeochemical investigation campaigns started in order to understand the genesis and evolution of the phenomenon. Survey results allowed a geological and structural characterization, showing the presence of “travertino” at the depression margins and its absence therein. It has been recognized, by the geophysics, features with NW-SE and NNE-SSW direction ascribable to a possible depression fracturing and consistent with regional structural trends. Thus, it has been possible to plan and perform geognostic investigation consisting in two drillings aimed to define the stratigraphy of the marginal and inner part of the depression.Published7 - 162TR. Ricostruzione e modellazione della struttura crostaleJCR Journa

    Imaging the three-dimensional architecture of the Middle Aterno basin (2009 L’Aquila earthquake, Central Italy) using ground TDEM and seismic noise surveys: preliminary results

    Get PDF
    We present preliminary results from a multidisciplinary geophysical approach applied to the imaging of the threedimensional architecture of the Middle Aterno basin, close to the epicentral area of the 2009 L’Aquila earthquake (central Italy). We collected several time domain electromagnetic soundings (TDEM) coupled with seismic noise measurements focusing on the characterization of the bedrock/infill interface. Our preliminary results agree with existing geophysical data collected in the area, and show that the southeastern portion of the basin is characterized by a deepening of the Mesozoic-Tertiary bedrock down to a depth of more than 450 m. We found that a joint use of electromagnetic and seismic methods significantly contributes in obtaining new insights on the 3D geometry of the Middle Aterno basin. Moreover, we believe that our combined approach based on TDEM and noise measurements can be adopted to investigate similar geological settings elsewhere.PublishedPescina, Fucino Basin, Italy2T. Tettonica attiva7A. Geofisica di esplorazioneope

    Imaging the three-dimensional architecture of the Middle Aterno basin (2009 L’Aquila earthquake, Central Italy) using ground TDEM and seismic noise surveys: preliminary results

    Get PDF
    We present preliminary results from a multidisciplinary geophysical approach applied to the imaging of the threedimensional architecture of the Middle Aterno basin, close to the epicentral area of the 2009 L’Aquila earthquake (central Italy). We collected several time domain electromagnetic soundings (TDEM) coupled with seismic noise measurements focusing on the characterization of the bedrock/infill interface. Our preliminary results agree with existing geophysical data collected in the area, and show that the southeastern portion of the basin is characterized by a deepening of the Mesozoic-Tertiary bedrock down to a depth of more than 450 m. We found that a joint use of electromagnetic and seismic methods significantly contributes in obtaining new insights on the 3D geometry of the Middle Aterno basin. Moreover, we believe that our combined approach based on TDEM and noise measurements can be adopted to investigate similar geological settings elsewhere

    Surface ruptures following the 26 December 2018, Mw 4.9, Mt. Etna earthquake, Sicily (Italy)

    Get PDF
    We present a 1:10,000 scale map of the coseismic surface ruptures following the 26 December 2018 Mw 4.9 earthquake that struck the eastern flank of Mt. Etna volcano (southern Italy). Detailed rupture mapping is based on extensive field surveys in the epicentral region. Despite the small size of the event, we were able to document surface faulting for about 8 km along the trace of the NNW-trending active Fiandaca Fault, belonging to the Timpe tectonic system in the eastern flank of the volcano. The mapped ruptures are characterized in most cases by perceivable opening and by a dominant right-oblique sense of slip, with an average slip of about 0.09 m and a peak value of 0.35 m. It is also noteworthy that the ruptures vary significantly in their kinematic expression, denoting locally high degree of complexity of the surface faulting.Published831-8372T. Deformazione crostale attivaJCR Journa

    Surface ruptures database related to the 26 December 2018, MW 4.9 Mt. Etna earthquake, southern Italy

    Get PDF
    We provide a database of the surface ruptures produced by the 26 December 2018 Mw 4.9 earthquake that struck the eastern flank of Mt. Etna volcano in Sicily (southern Italy). Despite its relatively small magnitude, this shallow earthquake caused about 8 km of surface faulting, along the trace of the NNW-trending active Fiandaca Fault. Detailed field surveys have been performed in the epicentral area to map the ruptures and to characterize their kinematics. The surface ruptures show a dominant right-oblique sense of displacement with an average slip of about 0.09 m and a maximum value of 0.35 m. We have parsed and organized all observations in a concise database, with 932 homogeneous georeferenced records. The Fiandaca Fault is part of the complex active Timpe faults system affecting the eastern flank of Etna, and its seismic history indicates a prominent surface-faulting potential. Therefore, this database is essential for unravelling the seismotectonics of shallow earthquakes in volcanic areas, and contributes updating empirical scaling regressions that relate magnitude and extent of surface faulting.Publishedid 422T. Deformazione crostale attivaJCR Journa

    Uptake and accumulation of emerging contaminants in processing tomato irrigated with tertiary treated wastewater effluent: a pilot-scale study

    Get PDF
    The reuse of treated wastewater for crop irrigation is vital in water-scarce semi-arid regions. However, concerns arise regarding emerging contaminants (ECs) that persist in treated wastewater and may accumulate in irrigated crops, potentially entering the food chain and the environment. This pilot-scale study conducted in southern Italy focused on tomato plants (Solanum lycopersicum L. cv Taylor F1) irrigated with treated wastewater to investigate EC uptake, accumulation, and translocation processes. The experiment spanned from June to September 2021 and involved three irrigation strategies: conventional water (FW), treated wastewater spiked with 10 target contaminants at the European average dose (TWWx1), and tertiary WWTP effluent spiked with the target contaminants at a triple dose (TWWx3). The results showed distinct behavior and distribution of ECs between the TWWx1 and TWWx3 strategies. In the TWWx3 strategy, clarithromycin, carbamazepine, metoprolol, fluconazole, and climbazole exhibited interactions with the soil-plant system, with varying degradation rates, soil accumulation rates, and plant accumulation rates. In contrast, naproxen, ketoprofen, diclofenac, sulfamethoxazole, and trimethoprim showed degradation. These findings imply that some ECs may be actively taken up by plants, potentially introducing them into the food chain and raising concerns for humans and the environment

    Gruppo Operativo Emersito++ Evento Sismico Ischia 2017: Campagne Di Misure Geofisiche, Rapporto N°1

    Get PDF
    Rapporto Tecnico n°1 della task force operativa EMERSITO++ (INGV) che descrive le campagne sismiche ed elettromagnetiche condotte nei comuni di Casamicciola Terme e di Lacco Ameno a seguito del terremoto di Ischia del 21 Agosto 2017.INGVPublished4T. Sismologia, geofisica e geologia per l'ingegneria sismica1SR. TERREMOTI - Servizi e ricerca per la SocietàN/A or not JC
    corecore