18,601 research outputs found
Microgravity noncontact temperature requirements at NASA Lewis Research Center
NASA Lewis Research Center is currently supporting 66 microgravity science and applications projects. The 66 projects are separated into 23 flight projects and 43 ground-based projects. The part of the NASA Lewis program dealing with flight experiments is divided into six areas: Combustion Science, Materials Science, Fluid Physics, Instrumentation/Equipment, Advanced Technology Development, and Space Station Multi-User Facility studies. The part of the NASA Lewis program dealing with ground-based experiments is coincidentally also divided into six areas: Electronic Materials, Combustion Science, Fluid Dynamics and Transport Phenomena, Metals and Alloys, Glasses and Ceramics, and Physics and Chemistry Experiments. Several purposes exist for ground-based experimenting. Preliminary information is necessary before a decision can be made for flight status, the short low gravity durations available in ground facilities are adequate for a particular study, or extensive ground-based research must be conducted to define and support the microgravity science endeavors contemplated for space. Not all of the 66 microgravity science and application projects at NASA Lewis have temperature requirements, but most do. Since space allocation does not permit a review of all the pertinent projects, a decision was made to restrict the coverage to the science flight projects, flight projects minus the advanced technology development, and multiuser facility efforts. Very little is lost by this decision as the types of temperature requirements for science flight projects can be considered representative of those for the ground-based projects. The noncontact temperature needs at NASA Lewis, as represented by the science flight projects are discussed by describing briefly the experiments themselves, by displaying an illustration of each experimental setup, and by specifying their temperature requisites
Corrosion resistance of sodium sulfate coated cobalt-chromium-aluminum alloys at 900 C, 1000 C, and 1100 C
The corrosion of sodium sulfate coated cobalt alloys was measured and the results compared to the cyclic oxidation of alloys with the same composition, and to the hot corrosion of compositionally equivalent nickel-base alloys. Cobalt alloys with sufficient aluminum content to form aluminum containing scales corrode less than their nickel-base counterparts. The cobalt alloys with lower aluminum levels form CoO scales and corrode more than their nickel-base counterparts which form NiO scales
Hot corrosion of S-57, 1 cobalt-base alloy
A cobalt base alloy, S-57, was hot corrosion tested in Mach 0.3 burner rig combustion gases at maximum alloy temperatures of 900 and 1000 C. Various salt concentrations were injected into the burner: 0.5, 2, 5, and 10 ppm synthetic sea salt and 4 ppm sodium sulfate (Na2SO4). S-57 underwent accelerated corrosion only under the most severe test conditions, for example, 4 ppm Na2SO4 at 900 C. The process of the accelerated corrosion was primarily sulfidation
Spectroscopic fingerprints of a surface Mott-Hubbard insulator: the case of SiC(0001)
We discuss the spectroscopic fingerprints that a surface Mott-Hubbard
insulator should show at the intra-atomic level. The test case considered is
that of the Si-terminated SiC(0001) sqrt{3}xsqrt{3} surface, which is known
experimentally to be insulating. We argue that, due to the Mott-Hubbard
phenomenon, spin unpaired electrons in the Si adatom dangling bonds are
expected to give rise to a Si-2p core level spectrum with a characteristic
three-peaked structure, as seen experimentally. This structure results from the
joint effect of intra-atomic exchange, spatial anisotropy, and spin-orbit
coupling. Auger intensities are also discussed.Comment: 4 pages, 2 figures, ECOSS-18 conferenc
Bifurcation of periodic solutions to the singular Yamabe problem on spheres
We obtain uncountably many periodic solutions to the singular Yamabe problem
on a round sphere, that blow up along a great circle. These are (complete)
constant scalar curvature metrics on the complement of inside ,
, that are conformal to the round (incomplete) metric and "periodic"
in the sense of being invariant under a discrete group of conformal
transformations. These solutions come from bifurcating branches of constant
scalar curvature metrics on compact quotients of .Comment: LaTeX2e, 12 pages, final version. To appear in J. Differential Geo
Determination of convective diffusion heat/mass transfer rates to burner rig test targets comparable in size to cross-stream jet diameter
Two sets of experiments have been performed to be able to predict the convective diffusion heat/mass transfer rates to a cylindrical target whose height and diameter are comparable to, but less than, the diameter of the circular cross-stream jet, thereby simulating the same geometric configuration as a typical burner rig test specimen located in the cross-stream of the combustor exit nozzle. The first set exploits the naphthalene sublimation technique to determine the heat/mass transfer coefficient under isothermal conditions for various flow rates (Reynolds numbers). The second set, conducted at various combustion temperatures and Reynolds numbers, utilized the temperature variation along the surface of the above-mentioned target under steady-state conditions to estimate the effect of cooling (dilution) due to the entrainment of stagnant room temperature air. The experimental information obtained is used to predict high temperature, high velocity corrosive salt vapor deposition rates in burner rigs on collectors that are geometrically the same. The agreement with preliminary data obtained from Na2SO4 vapor deposition experiments is found to be excellent
Hot corrosion resistance of nickel-chromium-aluminum alloys
The hot corrosion resistance of nickel-chromium-aluminum alloy was examined by cyclically oxidizing sodium sulfate coated specimens in still air at 900, 1000 and 1100 C. The compositions tested were within the ternary region: Ni; Ni-50 at.% Cr; and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. Corrosion isopleths were prepared from these equations. Compositional regions with the best hot corrosion resistance were identified
Microscopic theory of vibronic dynamics in linear polyenes
We propose a novel approach to calculate dynamical processes at ultrafast
time scale in molecules in which vibrational and electronic motions are
strongly mixed. The relevant electronic orbitals and their interactions are
described by a Hubbard model, while electron-phonon interaction terms account
for the bond length dependence of the hopping and the change in ionic radii
with valence charge. The latter term plays a crucial role in the non-adiabatic
internal conversion process of the molecule. The time resolved photoelectron
spectra are in good qualitative agreement with experiments.Comment: 3 figures, other comment
Experimental verification of corrosive vapor deposition rate theory in high velocity burner rigs
The ability to predict deposition rates is required to facilitate modelling of high temperature corrosion by fused salt condensates in turbine engines. A corrosive salt vapor deposition theory based on multicomponent chemically frozen boundary layers (CFBL) has been successfully verified by high velocity burner rig experiments. The experiments involved internally air-impingement cooled, both rotating full and stationary segmented cylindrical collectors located in the crossflow of sodium-seeded combustion gases. Excellent agreement is found between the CFBL theory an the experimental measurements for both the absolute amounts of Na2SO4 deposition rates and the behavior of deposition rate with respect to collector temperature, mass flowrate (velocity) and Na concentration
- …