55 research outputs found
Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021 : a systematic analysis for the Global Burden of Disease Study 2021
Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic.
Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic.
Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021.
Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades
a systematic analysis for the Global Burden of Disease Study 2021
Funding Information: Research reported in this publication was supported by the Bill & Melinda Gates Foundation (OPP1152504); Queensland Department of Health, Australia; UK Department of Health and Social Care; the Norwegian Institute of Public Health; St Jude Children's Research Hospital; and the New Zealand Ministry of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders. Data for this research was provided by MEASURE Evaluation, funded by the US Agency for International Development (USAID). Views expressed do not necessarily reflect those of USAID, the US Government, or MEASURE Evaluation. This study uses a dataset provided by European Centre for Disease Prevention and Control (ECDC) based on data provided by WHO and Ministries of Health from the affected countries. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the ECDC. The accuracy of the authors' statistical analysis and the findings they report are not the responsibility of ECDC. ECDC is not responsible for conclusions or opinions drawn from the data provided. ECDC is not responsible for the correctness of the data and for data management, data merging, and data collation after provision of the data. ECDC shall not be held liable for improper or incorrect use of the data. Health Behaviour in School-Aged Children (HBSC) is an international study carried out in collaboration with WHO/EURO. The international coordinator of the 1997\u201398, 2001\u201302, 2005\u201306, and 2009\u201310 surveys was Candace Currie and the Data Bank Manager for the 1997\u201398 survey was Bente Wold, whereas for the following survey Oddrun Samda was the databank manager. A list of principal investigators in each country can be found at http://www.hbsc.org. Parts of this material are based on data and information provided by the Canadian institute for Health Information. However, the analyses, conclusions, opinions and statements expressed herein are those of the author and not those of the Canadian Institute for Health information. The data reported here have been supplied by the US Renal Data System (USRDS). The interpretation and reporting of these data are the responsibility of the authors and in no way should be seen as an official policy or interpretation of the US Government. The data used in this paper come from the 2009\u201310 Ghana Socioeconomic Panel Study Survey which is a nationally representative survey of over 5,000 households in Ghana. The survey is a joint effort undertaken by the Institute of Statistical, Social and Economic Research (ISSER) at the University of Ghana, and the Economic Growth Centre (EGC) at Yale University. It was funded by the Economic Growth Center. At the same time, ISSER and the EGC are not responsible for the estimations reported by the analyst(s). The harmonised dataset was downloaded from the Global Dietary Database (GDD) website ( https://www.globaldietarydatabase.org/). The Canadian Community Health Survey - Nutrition (CCHS-Nutrition), 2015 is available online ( https://www.globaldietarydatabase.org/management/microdata-surveys/650). The harmonisation of the original dataset was performed by GDD. The data was adapted from Statistics Canada, Canadian Community Health Survey: Public Use Microdata File, 2015/2016 (Statistics Canada. CCHS-Nutrition, 2015); this does not constitute an endorsement by Statistics Canada of this product. The data is used under the terms of the Statistics Canada Open Licence (Statistics Canada. Statistics Canada Open Licence. https://www.statcan.gc.ca/eng/reference/licence). The Health and Retirement Study (HRS) is sponsored by the National Institute on Aging (grant number NIA U01AG009740) and is conducted by the University of Michigan. The Palestinian Central Bureau of Statistics granted the researchers access to relevant data in accordance with license no. SLN2014-3-170, after subjecting data to processing aiming to preserve the confidentiality of individual data in accordance with the General Statistics Law - 2000. The researchers are solely responsible for the conclusions and inferences drawn upon available data. The results and conclusions are mine and not those of Eurostat, the European Commission, or any of the national statistical authorities whose data have been used. This manuscript is based on data collected and shared by the International Vaccine Institute (IVI) from an original study it conducted with support from the Bill & Melinda Gates Foundation. This paper uses data from SHARE Waves 1, 2, 3 (SHARELIFE), 4, 5 and 6 (dois: 10.6103/SHARE.w1.611,10.6103/SHARE.w2.611, 10.6103/SHARE.w3.611, 10.6103/SHARE.w4.611, 10.6103/SHARE.w5.611, 10.6103/SHARE.w6.611), see B\u00F6rsch-Supan et al. (2013) for methodological details. The SHARE data collection has been primarily funded by the European Commission through FP5 (QLK6-CT-2001-00360), FP6 (SHARE-I3: RII-CT-2006-062193, COMPARE: CIT5-CT-2005-028857, SHARELIFE: CIT4-CT-2006- 028812) and FP7 (SHARE-PREP: N\u00B0211909, SHARE-LEAP: N\u00B0227822, SHARE M4: N\u00B0261982). Additional funding from the German Ministry of Education and Research, the Max Planck Society for the Advancement of Science, the US National Institute on Aging (U01_AG09740-13S2, P01_AG005842, P01_AG08291, P30_AG12815, R21_AG025169, Y1-AG-4553-01, IAG_BSR06-11, OGHA_04-064, HHSN271201300071C) and from various national funding sources is gratefully acknowledged (see www.share-project.org). This paper uses data from the Algeria - Setif and Mostaganem 2003 STEPS survey, implemented by Ministry of Health, Population and Hospital Reform (Algeria) with the support of WHO. This paper uses data from the Algeria 2016-2017 STEPS survey, implemented by Ministry of Health (Algeria) with the support of WHO. This paper uses data from the American Samoa 2004 STEPS survey, implemented by Department of Health (American Samoa) and Monash University (Australia) with the support of WHO. This paper uses data from the Armenia 2016 STEPS survey, implemented by Ministry of Health (Botswana) with the support of WHO. This paper uses data from the Azerbaijan 2017 STEPS survey, implemented by Ministry of Health (Azerbaijan) with the support of WHO. This paper uses data from the Bangladesh 2018 STEPS survey, implemented by Ministry of Health and Family Welfare (Bangladesh) with the support of WHO. This paper uses data from the Barbados 2007 STEPS survey, implemented by Ministry of Health (Barbados) with the support of WHO. This paper uses data from the Belarus 2016-2017 STEPS survey, implemented by Republican Scientific and Practical Center of Medical Technologies, Informatization, Management and Economics of Public Health (Belarus) with the support of WHO. This paper uses data from the Benin - Littoral 2007 STEPS survey, the Benin 2008 STEPS survey, and the Benin 2015 STEPS survey, implemented by Ministry of Health (Benin) with the support of WHO. This paper uses data from the Bhutan - Thimphu 2007 STEPS survey, implemented by Ministry of Health (Bhutan) with the support of WHO. This paper uses data from the Bhutan 2014 STEPS survey, implemented by Ministry of Health (Bhutan) with the support of the World Health Organization. This paper uses data from the Botswana 2014 STEPS survey, implemented by Ministry of Health (Armenia), National Institute of Health with the support of WHO. This paper uses data from the Brunei 2015-2016 STEPS survey, implemented by Ministry of Health (Brunei) with the support of WHO. This paper uses data from the Cambodia 2010 STEPS survey, implemented by Ministry of Health (Cambodia) with the support of WHO. This paper uses data from the Cameroon 2003 STEPS survey, implemented by Health of Populations in Transition (HoPiT) Research Group (Cameroon) and Ministry of Public Health (Cameroon) with the support of WHO. This paper uses data from the Cape Verde 2007 STEPS survey, implemented by Ministry of Health, National Statistics Office with the support of WHO. This paper uses data from the Central African Republic - Bangui 2010 STEPS survey and Central African Republic - Bangui and Ombella M'Poko 2016 STEPS survey, implemented by Ministry of Health and Population (Central African Republic) with the support of WHO. This paper uses data from the Comoros 2011 STEPS survey, implemented by Ministry of Health (Comoros) with the support of WHO. This paper uses data from the Congo - Brazzaville 2004 STEPS survey, implemented by Ministry of Health, Population and Hospital Reform (Algeria) with the support of WHO. This paper uses data from the Cook Islands 2003\u20132004 survey and Cook Islands 2013\u20132015 STEPS survey, implemented by Ministry of Health (Cook Islands) with the support of WHO. This paper uses data from the Eritrea 2010 STEPS survey, implemented by Ministry of Health (Eritrea) with the support of WHO. This paper uses data from the Fiji 2002 STEPS survey, implemented by Fiji School of Medicine, Menzies Center for Population Health Research, University of Tasmania (Australia), Ministry of Health (Fiji) with the support of WHO. This paper uses data from the Fiji 2011 STEPS survey, implemented by Ministry of Health (Fiji) with the support of WHO. This paper uses data from the Georgia 2016 STEPS survey, implemented by National Center for Disease Control and Public Health (Georgia) with the support of WHO. This paper uses data from the Ghana - Greater Accra Region 2006 STEPS survey, implemented by Ghana Health Service with the support of WHO. This paper uses data from the Guniea 2009 STEPS survey, implemented by Ministry of Public Health and Hygiene (Guinea) with the support of WHO. This paper uses data from the Guyana 2016 STEPS survey, implemented by Ministry of Health (Guyana) with the support of WHO. This paper uses data from the Iraq 2015 STEPS survey, implemented by Ministry of Health (Iraq) with the support of WHO. This paper uses data from the Kenya 2015 STEPS survey, implemented by Kenya National Bureau of Statistics, Ministry of Health (Kenya) with the support of WHO. This paper uses data from the Kiribati 2004\u20132006 STEPS survey and the Kiribati 2016 survey, implemented by Ministry of Health and Medical Services (Kiribati) with the support of WHO. This paper uses data from the Kuwait 2006 STEPS survey and the Kuwait 2014 STEPS survey, implemented by Ministry of Health (Kuwait) with the support of WHO. This paper uses data from the Kyrgyzstan 2013 STEPS survey, implemented by Ministry of Health (Kyrgyzstan) with the support of WHO. This paper uses data from the Laos 2013 STEPS survey, implemented by Ministry of Health (Laos) with the support of WHO. This paper uses data from the Lebanon 2016-2017 STEPS survey, implemented by Ministry of Public Health (Lebanon) with the support of WHO. This paper uses data from the Lesotho 2012 STEPS survey, implemented by Ministry of Health and Social Welfare (Lesotho) with the support of WHO. This paper uses data from the Liberia 2011 STEPS survey, implemented by Ministry of Health and Social Welfare (Liberia) with the support of WHO. This paper uses data from the Libya 2009 STEPS survey, implemented by Secretariat of Health and Environment (Libya) with the support of WHO. This paper uses data from the Malawi 2009 STEPS survey and Malawi 2017 STEPS survey, implemented by Ministry of Health (Malawi) with the support of WHO. This paper uses data from the Mali 2007 STEPS survey, implemented by Ministry of Health (Mali) with the support of WHO. This paper uses data from the Marshall Islands 2002 STEPS survey and the Marshall Islands 2017-2018 STEPS survey, implemented by Ministry of Health (Marshall Islands) with the support of WHO. This paper uses data from the Mauritania- Nouakchott 2006 STEPS survey, implemented by Ministry of Health (Mauritania) with the support of WHO. This paper uses data from the Micronesia - Chuuk 2006 STEPS survey, implemented by Ministry of Health (Palestine) with the support of WHO. This paper uses data from the Micronesia - Chuuk 2016 STEPS survey, implemented by Chuuk Department of Health Services (Micronesia), Department of Health and Social Affairs (Micronesia) with the support of WHO. This paper uses data from the Micronesia - Pohnpei 2002 STEPS survey, implemented by Centre for Physical Activity and Health, University of Sydney (Australia), Department of Health and Social Affairs (Micronesia), Fiji School of Medicine, Micronesia Human Resources Development Center, Pohnpei State Department of Health Services with the support of WHO. This paper uses data from the Micronesia - Pohnpei 2008 STEPS survey, implemented by FSM Department of Health and Social Affairs, Pohnpei State Department of Health Services with the support of WHO. This paper uses data from the Micronesia - Yap 2009 STEPS survey, implemented by Ministry of Health and Social Affairs (Micronesia) with the support of WHO. This paper uses data from the Micronesia- Kosrae 2009 STEPS survey, implemented by FSM Department of Health and Social Affairs with the support of WHO. This paper uses data from the Moldova 2013 STEPS survey, implemented by Ministry of Health (Moldova) with the support of WHO. This paper uses data from the Mongolia 2005 STEPS survey, the Mongolia 2009 STEPS survey, and the Mongolia 2013 STEPS survey, implemented by Ministry of Health (Mongolia) with the support of WHO. This paper uses data from the Morocco 2017 STEPS survey, implemented by Ministry of Health (Morocco) with the support of WHO. This paper uses data from the Mozambique 2005 STEPS survey, implemented by Ministry of Health (Mozambique) with the support of WHO. This paper uses data from the Myanmar 2014 STEPS survey, implemented by Ministry of Health (Myanmar) with the support of WHO. This paper uses data from the Nauru 2004 STEPS survey and the Nauru 2015\u20132016 STEPS survey, implemented by Ministry of Health (Nauru) with the support of WHO. This paper uses data from the Niger 2007 STEPS survey, implemented by Ministry of Health (Niger) with the support of WHO. This paper uses data from the Palau 2011-2013 STEPS survey and the Palau 2016 STEPS survey, implemented by Ministry of Health (Palau) with the support of WHO. This paper uses data from the Palestine 2010-2011 STEPS survey, implemented by Chuuk Department of Health Services (Micronesia), Department of Health and Social Affairs (Micronesia) with the support of WHO. This paper uses data from the Qatar 2012 STEPS survey, implemented by Supreme Council of Health (Qatar) with the support of WHO. This paper uses data from the Rwanda 2012-2013 STEPS survey, implemented by Ministry of Health (Rwanda) with the support of WHO. This paper uses data from the Samoa 2002 STEPS survey and the Samoa 2013 STEPS survey, implemented by Ministry of Health (Samoa) with the support of WHO. This paper uses data from the Sao Tome and Principe 2008 STEPS survey, implemented by Ministry of Health (Sao Tome and Principe) with the support of WHO. This paper uses data from the Seychelles 2004 STEPS survey, implemented by Ministry of Health (Seychelles) with the support of WHO. This paper uses data from the Solomon Islands 2005\u20132006 STEPS survey and the Solomon Islands 2015 STEPS survey, implemented by Ministry of Health and Medical Services (Solomon Islands) with the support of WHO. This paper uses data from the Sri Lanka 2014\u20132015 STEPS survey, implemented by Ministry of Health (Sri Lanka) with the support of WHO. This paper uses data from the Sudan 2016 STEPS survey, implemented by Ministry of Health (Sudan) with the support of WHO. This paper uses data from the Swaziland 2007 STEPS survey and the Swaziland 2014 STEPS survey, implemented by Ministry of Health (Swaziland) with the support of WHO. This paper uses data from the Tajikistan 2016 STEPS survey, implemented by Ministry of Health (Tajikistan) with the support of WHO. This paper uses data from the Tanzania - Zanzibar 2011 STEPS survey, implemented by Ministry of Health (Zanzibar) with the support of WHO. This paper uses data from the Tanzania 2012 STEPS survey, implemented by National Institute for Medical Research (Tanzania) with the support of WHO. This paper uses data from the Timor-Leste 2014 STEPS survey, implemented by Ministry of Health (Timor-Leste) with the support of WHO. This paper uses data from the Togo 2010\u20132011 STEPS survey, implemented by Ministry of Health (Togo) with the support of WHO. This paper uses data from the Tokelau 2005 STEPS survey, implemented by Tokelau Department of Health, Fiji School of Medicine with the support of WHO. This paper uses data from the Tonga 2004 STEPS survey and the Tonga 2011\u20132012 STEPS survey, implemented by Ministry of Health (Tonga) with the support of WHO. This paper uses data from the Tuvalu 2015 STEPS survey, implemented by Ministry of Health (Tuvalu), with the support of WHO. This paper uses data from the Uganda 2014 STEPS survey, implemented by Ministry of Health (Uganda) with the support of WHO. This paper uses data from the Uruguay 2006 STEPS survey and the Uruguay 2013-2014 STEPS survey, implemented by Ministry of Health (Uruguay) with the support of WHO. This paper uses data from the Vanuatu 2011 STEPS survey, implemented by Ministry of Health (Vanuatu) with the support of WHO. This paper uses data from the Viet Nam 2009 STEPS survey and the Viet Nam 2015 STEPS survey, implemented by Ministry of Health (Viet Nam) with the support of WHO. This paper uses data from the Virgin Islands, British 2009 STEPS survey, implemented by Ministry of Health and Social Development (British Virgin Islands) with the support of WHO. This paper uses data from the Zambia - Lusaka 2008 STEPS survey, implemented by Ministry of Health (Zambia) with the support of WHO. This paper uses data from the Zambia 2017 STEPS survey, implemented by Ministry of Health (Zambia) with the support of WHO. This research used data from the Chile National Health Survey 2003, 2009\u201310, and 2016\u201317. The authors are grateful to the Ministry of Health, survey copyright owner, for allowing them to have the database. All results of the study are those of the author and in no way committed to the Ministry. This research used information from the Health Surveys for epidemiological surveillance of the Undersecretary of Public Health. The authors thank the Ministry of Health of Chile, having allowed them to have access to the database. All the results obtained from the study or research are the responsibility of the authors and in no way compromise that institution. This research uses data from Add Health, a program project designed by J Richard Udry, Peter S Bearman, and Kathleen Mullan Harris, and funded by a grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 17 other agencies. Special acknowledgment is due to Ronald R Rindfuss and Barbara Entwisle for assistance in the original design. Persons interested in obtaining data files from Add Health should contact Add Health, Carolina Population Center, 123 W. Franklin Street, Chapel Hill, NC 27516-2524, USA ( [email protected]). No direct support was received from grant P01-HD31921 for this analysis. This study has been realised using the data collected by the Swiss Household Panel (SHP), which is based at the Swiss Centre of Expertise in the Social Sciences FORS. The project is financed by the Swiss National Science Foundation. We thank the Russia Longitudinal Monitoring Survey, RLMS-HSE, conducted by the National Research University Higher School of Economics and ZAO Demoscope together with Carolina Population Center, University of North Carolina at Chapel Hill, and the Institute of Sociology RAS for making these data available. Editorial note: The Lancet Group takes a neutral position with respect to territorial claims in published maps and institutional affiliations. Publisher Copyright: © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-se
Alcohol use and burden for 195 countries and territories, 1990-2016 : a systematic analysis for the Global Burden of Disease Study 2016
Background Alcohol use is a leading risk factor for death and disability, but its overall association with health remains complex given the possible protective effects of moderate alcohol consumption on some conditions. With our comprehensive approach to health accounting within the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we generated improved estimates of alcohol use and alcohol-attributable deaths and disability-adjusted life-years (DALYs) for 195 locations from 1990 to 2016, for both sexes and for 5-year age groups between the ages of 15 years and 95 years and older. Methods Using 694 data sources of individual and population-level alcohol consumption, along with 592 prospective and retrospective studies on the risk of alcohol use, we produced estimates of the prevalence of current drinking, abstention, the distribution of alcohol consumption among current drinkers in standard drinks daily (defined as 10 g of pure ethyl alcohol), and alcohol-attributable deaths and DALYs. We made several methodological improvements compared with previous estimates: first, we adjusted alcohol sales estimates to take into account tourist and unrecorded consumption; second, we did a new meta-analysis of relative risks for 23 health outcomes associated with alcohol use; and third, we developed a new method to quantify the level of alcohol consumption that minimises the overall risk to individual health. Findings Globally, alcohol use was the seventh leading risk factor for both deaths and DALYs in 2016, accounting for 2.2% (95% uncertainty interval [UI] 1.5-3.0) of age-standardised female deaths and 6.8% (5.8-8.0) of age-standardised male deaths. Among the population aged 15-49 years, alcohol use was the leading risk factor globally in 2016, with 3.8% (95% UI 3.2-4-3) of female deaths and 12.2% (10.8-13-6) of male deaths attributable to alcohol use. For the population aged 15-49 years, female attributable DALYs were 2.3% (95% UI 2.0-2.6) and male attributable DALYs were 8.9% (7.8-9.9). The three leading causes of attributable deaths in this age group were tuberculosis (1.4% [95% UI 1. 0-1. 7] of total deaths), road injuries (1.2% [0.7-1.9]), and self-harm (1.1% [0.6-1.5]). For populations aged 50 years and older, cancers accounted for a large proportion of total alcohol-attributable deaths in 2016, constituting 27.1% (95% UI 21.2-33.3) of total alcohol-attributable female deaths and 18.9% (15.3-22.6) of male deaths. The level of alcohol consumption that minimised harm across health outcomes was zero (95% UI 0.0-0.8) standard drinks per week. Interpretation Alcohol use is a leading risk factor for global disease burden and causes substantial health loss. We found that the risk of all-cause mortality, and of cancers specifically, rises with increasing levels of consumption, and the level of consumption that minimises health loss is zero. These results suggest that alcohol control policies might need to be revised worldwide, refocusing on efforts to lower overall population-level consumption.Peer reviewe
Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016
The UN’s Sustainable Development Goals (SDGs) are grounded in the global ambition of “leaving no one behind”. Understanding today’s gains and gaps for the health-related SDGs is essential for decision makers as they aim to improve the health of populations. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016), we measured 37 of the 50 health-related SDG indicators over the period 1990–2016 for 188 countries, and then on the basis of these past trends, we projected indicators to 2030
Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016
Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.
The Global Burden of Diseases, Injuries and Risk Factors 2017 includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data. METHODS: We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting
Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.
How long one lives, how many years of life are spent in good and poor health, and how the population's state of health and leading causes of disability change over time all have implications for policy, planning, and provision of services. We comparatively assessed the patterns and trends of healthy life expectancy (HALE), which quantifies the number of years of life expected to be lived in good health, and the complementary measure of disability-adjusted life-years (DALYs), a composite measure of disease burden capturing both premature mortality and prevalence and severity of ill health, for 359 diseases and injuries for 195 countries and territories over the past 28 years. Methods We used data for age-specific mortality rates, years of life lost (YLLs) due to premature mortality, and years lived with disability (YLDs) from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 to calculate HALE and DALYs from 1990 to 2017. We calculated HALE using age-specific mortality rates and YLDs per capita for each location, age, sex, and year. We calculated DALYs for 359 causes as the sum of YLLs and YLDs. We assessed how observed HALE and DALYs differed by country and sex from expected trends based on Socio-demographic Index (SDI). We also analysed HALE by decomposing years of life gained into years spent in good health and in poor health, between 1990 and 2017, and extra years lived by females compared with males. Findings Globally, from 1990 to 2017, life expectancy at birth increased by 7·4 years (95% uncertainty interval 7·1-7·8), from 65·6 years (65·3-65·8) in 1990 to 73·0 years (72·7-73·3) in 2017. The increase in years of life varied from 5·1 years (5·0-5·3) in high SDI countries to 12·0 years (11·3-12·8) in low SDI countries. Of the additional years of life expected at birth, 26·3% (20·1-33·1) were expected to be spent in poor health in high SDI countries compared with 11·7% (8·8-15·1) in low-middle SDI countries. HALE at birth increased by 6·3 years (5·9-6·7), from 57·0 years (54·6-59·1) in 1990 to 63·3 years (60·5-65·7) in 2017. The increase varied from 3·8 years (3·4-4·1) in high SDI countries to 10·5 years (9·8-11·2) in low SDI countries. Even larger variations in HALE than these were observed between countries, ranging from 1·0 year (0·4-1·7) in Saint Vincent and the Grenadines (62·4 years [59·9-64·7] in 1990 to 63·5 years [60·9-65·8] in 2017) to 23·7 years (21·9-25·6) in Eritrea (30·7 years [28·9-32·2] in 1990 to 54·4 years [51·5-57·1] in 2017). In most countries, the increase in HALE was smaller than the increase in overall life expectancy, indicating more years lived in poor health. In 180 of 195 countries and territories, females were expected to live longer than males in 2017, with extra years lived varying from 1·4 years (0·6-2·3) in Algeria to 11·9 years (10·9-12·9) in Ukraine. Of the extra years gained, the proportion spent in poor health varied largely across countries, with less than 20% of additional years spent in poor health in Bosnia and Herzegovina, Burundi, and Slovakia, whereas in Bahrain all the extra years were spent in poor health. In 2017, the highest estimate of HALE at birth was in Singapore for both females (75·8 years [72·4-78·7]) and males (72·6 years [69·8-75·0]) and the lowest estimates were in Central African Republic (47·0 years [43·7-50·2] for females and 42·8 years [40·1-45·6] for males). Globally, in 2017, the five leading causes of DALYs were neonatal disorders, ischaemic heart disease, stroke, lower respiratory infections, and chronic obstructive pulmonary disease. Between 1990 and 2017, age-standardised DALY rates decreased by 41·3% (38·8-43·5) for communicable diseases and by 49·8% (47·9-51·6) for neonatal disorders. For non-communicable diseases, global DALYs increased by 40·1% (36·8-43·0), although age-standardised DALY rates decreased by 18·1% (16·0-20·2)
Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016
Copyright © 2018 The Author(s). Published by Elsevier Ltd. Background A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97·1 (95% UI 95·8-98·1) in Iceland, followed by 96·6 (94·9-97·9) in Norway and 96·1 (94·5-97·3) in the Netherlands, to values as low as 18·6 (13·1-24·4) in the Central African Republic, 19·0 (14·3-23·7) in Somalia, and 23·4 (20·2-26·8) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91·5 (89·1-93·6) in Beijing to 48·0 (43·4-53·2) in Tibet (a 43·5-point difference), while India saw a 30·8-point disparity, from 64·8 (59·6-68·8) in Goa to 34·0 (30·3-38·1) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4·8-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20·9-point to 17·0-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17·2-point to 20·4-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle- SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage hinges upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view - and subsequent provision - of quality health care for all populations
Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016
Background: A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97\ub71 (95% UI 95\ub78-98\ub71) in Iceland, followed by 96\ub76 (94\ub79-97\ub79) in Norway and 96\ub71 (94\ub75-97\ub73) in the Netherlands, to values as low as 18\ub76 (13\ub71-24\ub74) in the Central African Republic, 19\ub70 (14\ub73-23\ub77) in Somalia, and 23\ub74 (20\ub72-26\ub78) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91\ub75 (89\ub71-93\ub76) in Beijing to 48\ub70 (43\ub74-53\ub72) in Tibet (a 43\ub75-point difference), while India saw a 30\ub78-point disparity, from 64\ub78 (59\ub76-68\ub78) in Goa to 34\ub70 (30\ub73-38\ub71) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4\ub78-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20\ub79-point to 17\ub70-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17\ub72-point to 20\ub74-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle- SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage hinges upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view-and subsequent provision-of quality health care for all populations
Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
BACKGROUND: Measurement of changes in health across locations is useful to compare and contrast changing epidemiological patterns against health system performance and identify specific needs for resource allocation in research, policy development, and programme decision making. Using the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we drew from two widely used summary measures to monitor such changes in population health: disability-adjusted life-years (DALYs) and healthy life expectancy (HALE). We used these measures to track trends and benchmark progress compared with expected trends on the basis of the Socio-demographic Index (SDI).
METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2016. We calculated DALYs by summing years of life lost and years of life lived with disability for each location, age group, sex, and year. We estimated HALE using age-specific death rates and years of life lived with disability per capita. We explored how DALYs and HALE differed from expected trends when compared with the SDI: the geometric mean of income per person, educational attainment in the population older than age 15 years, and total fertility rate.
FINDINGS: The highest globally observed HALE at birth for both women and men was in Singapore, at 75·2 years (95% uncertainty interval 71·9-78·6) for females and 72·0 years (68·8-75·1) for males. The lowest for females was in the Central African Republic (45·6 years [42·0-49·5]) and for males was in Lesotho (41·5 years [39·0-44·0]). From 1990 to 2016, global HALE increased by an average of 6·24 years (5·97-6·48) for both sexes combined. Global HALE increased by 6·04 years (5·74-6·27) for males and 6·49 years (6·08-6·77) for females, whereas HALE at age 65 years increased by 1·78 years (1·61-1·93) for males and 1·96 years (1·69-2·13) for females. Total global DALYs remained largely unchanged from 1990 to 2016 (-2·3% [-5·9 to 0·9]), with decreases in communicable, maternal, neonatal, and nutritional (CMNN) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). The exemplars, calculated as the five lowest ratios of observed to expected age-standardised DALY rates in 2016, were Nicaragua, Costa Rica, the Maldives, Peru, and Israel. The leading three causes of DALYs globally were ischaemic heart disease, cerebrovascular disease, and lower respiratory infections, comprising 16·1% of all DALYs. Total DALYs and age-standardised DALY rates due to most CMNN causes decreased from 1990 to 2016. Conversely, the total DALY burden rose for most NCDs; however, age-standardised DALY rates due to NCDs declined globally.
INTERPRETATION: At a global level, DALYs and HALE continue to show improvements. At the same time, we observe that many populations are facing growing functional health loss. Rising SDI was associated with increases in cumulative years of life lived with disability and decreases in CMNN DALYs offset by increased NCD DALYs. Relative compression of morbidity highlights the importance of continued health interventions, which has changed in most locations in pace with the gross domestic product per person, education, and family planning. The analysis of DALYs and HALE and their relationship to SDI represents a robust framework with which to benchmark location-specific health performance. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform health policies, health system improvement initiatives, targeted prevention efforts, and development assistance for health, including financial and research investments for all countries, regardless of their level of sociodemographic development. The presence of countries that substantially outperform others suggests the need for increased scrutiny for proven examples of best practices, which can help to extend gains, whereas the presence of underperforming countries suggests the need for devotion of extra attention to health systems that need more robust support.
FUNDING: Bill & Melinda Gates Foundation
- …