6 research outputs found

    Volumetric Behavior of Sodium Saccharin in Water and (0.1, 0.3, and 0.5) m Fructose at (298.15, 303.15, 308.15, and 313.15) K

    Get PDF
    In order to get the information regarding the sweetener-water and sweetener-sweetener interactions, densities of sodium saccharin in water and (0.1, 0.3, and 0.5) m fructose have been measured at (298.15, 303.15, 308.15, and 313.15) K by the use of bicapillary pycnometer. From density values, partial molar volumes, expansion coefficient, Hepler’s constant, apparent specific volumes, partial molar volumes of transfer, doublet and triplet interaction coefficients have been calculated. From density study, it has been concluded that strong water-sodium saccharin interactions exist. Sodium saccharin is water structure maker. Strong interactions exist between sodium saccharin and fructose. In presence of fructose, the interactions exist between hydrophilic group (–OH, C=O, and –O–) of fructose and sodium ion of sodium saccharin in aqueous solutions of sodium saccharin. All investigated solutions exhibit sweet taste. DOI: http://dx.doi.org/10.17807/orbital.v9i1.92

    Volumetric Behavior of Sodium Saccharin in Water and (0.1, 0.3, and 0.5) m Fructose at (298.15, 303.15, 308.15, and 313.15) K

    Get PDF
    In order to get the information regarding the sweetener-water and sweetener-sweetener interactions, densities of sodium saccharin in water and (0.1, 0.3, and 0.5) m fructose have been measured at (298.15, 303.15, 308.15, and 313.15) K by the use of bicapillary pycnometer. From density values, partial molar volumes, expansion coefficient, Hepler’s constant, apparent specific volumes, partial molar volumes of transfer, doublet and triplet interaction coefficients have been calculated. From density study, it has been concluded that strong water-sodium saccharin interactions exist. Sodium saccharin is water structure maker. Strong interactions exist between sodium saccharin and fructose. In presence of fructose, the interactions exist between hydrophilic group (–OH, C=O, and –O–) of fructose and sodium ion of sodium saccharin in aqueous solutions of sodium saccharin. All investigated solutions exhibit sweet taste. DOI: http://dx.doi.org/10.17807/orbital.v9i1.92

    Determination of Phosphate in Water Samples of Nashik District (Maharashtra State, India) Rivers by UV-Visible Spectroscopy

    No full text
    The major rivers of Nashik District (Maharashtra State, India) are Godavari, Kadawa, Girna, Punad and Mosam. The major water pollutant of Nashik District Rivers is Phosphate. The amount of phosphate has been determined by the molybdenum blue phosphorous method in conjugation with UV-Visible Spectrophotometer. The data has been analyzed by least square method. The more phosphate polluted river in Nashik district is Godavari. The least phosphate polluted river in Nashik District is Punad
    corecore