21 research outputs found

    Origin of marine planktonic cyanobacteria

    Get PDF
    Marine planktonic cyanobacteria contributed to the widespread oxygenation of the oceans towards the end of the Pre-Cambrian and their evolutionary origin represents a key transition in the geochemical evolution of the Earth surface. Little is known, however, about the evolutionary events that led to the appearance of marine planktonic cyanobacteria. I present here phylogenomic (135 proteins and two ribosomal RNAs), Bayesian relaxed molecular clock (18 proteins, SSU and LSU) and Bayesian stochastic character mapping analyses from 131 cyanobacteria genomes with the aim to unravel key evolutionary steps involved in the origin of marine planktonic cyanobacteria. While filamentous cell types evolved early on at around 2,600–2,300 Mya and likely dominated microbial mats in benthic environments for most of the Proterozoic (2,500–542 Mya), marine planktonic cyanobacteria evolved towards the end of the Proterozoic and early Phanerozoic. Crown groups of modern terrestrial and/or benthic coastal cyanobacteria appeared during the late Paleoproterozoic to early Mesoproterozoic. Decrease in cell diameter and loss of filamentous forms contributed to the evolution of unicellular planktonic lineages during the middle of the Mesoproterozoic (1,600–1,000 Mya) in freshwater environments. This study shows that marine planktonic cyanobacteria evolved from benthic marine and some diverged from freshwater ancestors during the Neoproterozoic (1,000–542 Mya)

    Cyanobacterial evolution during the Precambrian

    Get PDF

    Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401

    Get PDF
    BACKGROUND: Cyanobacteria are major primary producers in extreme cold ecosystems. Many lineages of cyanobacteria thrive in these harsh environments, but it is not fully understood how they survive in these conditions and whether they have evolved specific mechanisms of cold adaptation. Phormidesmis priestleyi is a cyanobacterium found throughout the cold biosphere (Arctic, Antarctic and alpine habitats). Genome sequencing of P. priestleyi BC1401, an isolate from a cryoconite hole on the Greenland Ice Sheet, has allowed for the examination of genes involved in cold shock response and production of extracellular polymeric substances (EPS). EPSs likely enable cyanobacteria to buffer the effects of extreme cold and by identifying mechanisms for EPS production in P. priestleyi BC1401 this study lays the way for investigating transcription and regulation of EPS production in an ecologically important cold tolerant cyanobacterium. RESULTS: We sequenced the draft genome of P. priestleyi BC1401 and implemented a new de Bruijn graph visualisation approach combined with BLAST analysis to separate cyanobacterial contigs from a simple metagenome generated from non-axenic cultures. Comparison of known cold adaptation genes in P. priestleyi BC1401 with three relatives from other environments revealed no clear differences between lineages. Genes involved in EPS biosynthesis were identified from the Wzy- and ABC-dependent pathways. The numbers of genes involved in cell wall and membrane biogenesis in P. priestleyi BC1401 were typical relative to the genome size. A gene cluster implicated in biofilm formation was found homologous to the Wps system, although the intracellular signalling pathways by which this could be regulated remain unclear. CONCLUSIONS: Results show that the genomic characteristics and complement of known cold shock genes in P. priestleyi BC1401 are comparable to related lineages from a wide variety of habitats, although as yet uncharacterised cold shock genes in this organism may still exist. EPS production by P. priestleyi BC1401 likely contributes to its ability to survive efficiently in cold environments, yet this mechanism is widely distributed throughout the cyanobacterial phylum. Discovering how these EPS related mechanisms are regulated may help explain why P. priestleyi BC1401 is so successful in cold environments where related lineages are not. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2846-4) contains supplementary material, which is available to authorized users

    Multiple adaptations to polar and alpine environments within cyanobacteria:a phylogenomic and Bayesian approach

    Get PDF
    Cyanobacteria are major primary producers in the polar and alpine regions contributing significantly to nitrogen and carbon cycles in the cryosphere. Recent advancements in environmental sequencing techniques have revealed great molecular diversity of microorganisms in cold environments. However, there are no comprehensive phylogenetic analyses including the entire known diversity of cyanobacteria from these extreme environments. We present here a global phylogenetic analysis of cyanobacteria including an extensive dataset comprised of available SSU rRNA gene sequences of cyanobacteria from polar and high altitude environments. Furthermore, we used a large-scale multi-gene (135 proteins and two ribosomal RNAs) genome constraint including 57 cyanobacterial genomes. Our analyses produced the first phylogeny of cold cyanobacteria exhibiting robust deep branching relationships implementing a phylogenomic approach. We recovered several clades common to Arctic, Antarctic and alpine sites suggesting that the traits necessary for survival in the cold have been acquired by a range of different mechanisms in all major cyanobacteria lineages. Bayesian ancestral state reconstruction revealed that twenty clades each have common ancestors with high probabilities of being capable of surviving in cold environments

    sMap: Evolution of independent, dependent and conditioned discrete characters in a Bayesian framework

    No full text
    sMap is a program to perform stochastic mapping (Nielsen, 2002; Huelsenbeck, Nielsen and Bollback, 2003) analyses on discrete characters. This kind of analysis involves estimating substitution parameters, reconstructing ancestral states and simulating histories, in order to study the evolution of multiple types of discrete characters (e.g. morphological features, presence of genes, habitats...), without necessarily relying on a single phylogenetic tree. sMap is written using .NET Core, and is available for Windows, macOS and Linux operating systems; the main program is a command-line utility, but a graphical front-end (sMap-GUI) is also provided. sMap is licensed under a GPLv3 license. The sMap manual holds a detailed description of the programs and multiple tutorials. These are written mostly with the command-line version of sMap in mind, but it should be reasonably easy to follow them using the GUI version too
    corecore