5 research outputs found

    Design of In Situ Poled Ce<sup>3+</sup>-Doped Electrospun PVDF/Graphene Composite Nanofibers for Fabrication of Nanopressure Sensor and Ultrasensitive Acoustic Nanogenerator

    No full text
    We report an efficient, low-cost in situ poled fabrication strategy to construct a large area, highly sensitive, flexible pressure sensor by electrospun Ce<sup>3+</sup> doped PVDF/graphene composite nanofibers. The entire device fabrication process is scalable and enabling to large-area integration. It can able to detect imparting pressure as low as 2 Pa with high level of sensitivity. Furthermore, Ce<sup>3+</sup>-doped PVDF/graphene nanofiber based ultrasensitive pressure sensors can also be used as an effective nanogenerator as it generating an output voltage of 11 V with a current density ∼6 nA/cm<sup>2</sup> upon repetitive application of mechanical stress that could lit up 10 blue light emitting diodes (LEDs) instantaneously. Furthermore, to use it in environmental random vibrations (such as wind flow, water fall, transportation of vehicles, etc.), nanogenerator is integrated with musical vibration that exhibits to power up three blue LEDs instantly that promises as an ultrasensitive acoustic nanogenerator (ANG). The superior sensing properties in conjunction with mechanical flexibility, integrability, and robustness of nanofibers enabled real-time monitoring of sound waves as well as detection of different type of musical vibrations. Thus, ANG promises to use as an ultrasensitive pressure sensor, mechanical energy harvester, and effective power source for portable electronic and wearable devices

    An Effective Electrical Throughput from PANI Supplement ZnS Nanorods and PDMS-Based Flexible Piezoelectric Nanogenerator for Power up Portable Electronic Devices: An Alternative of MWCNT Filler

    No full text
    We demonstrate the requirement of electrical poling can be avoided in flexible piezoelectric nanogenerators (FPNGs) made of low-temperature hydrothermally grown wurtzite zinc sulfide nanorods (ZnS-NRs) blended with polydimethylsiloxane (PDMS). It has been found that conductive fillers, such as polyaniline (PANI) and multiwall carbon nanotubes (MWCNTs), can subsequently improve the overall performance of FPNG. A large electrical throughput (open circuit voltage ∼35 V with power density ∼2.43 μW/cm<sup>3</sup>) from PANI supplement added nanogenerator (PZP-FPNG) indicates that it is an effective means to replace the MWCNTs filler. The time constant (τ) estimated from the transient response of the capacitor charging curves signifying that the FPNGs are very much capable to charge the capacitors in very short time span (e.g., 3 V is accomplished in 50 s) and thus expected to be perfectly suitable in portable, wearable and flexible electronics devices. We demonstrate that FPNG can instantly lit up several commercial Light Emitting Diodes (LEDs) (15 red, 25 green, and 55 blue, individually) and power up several portable electronic gadgets, for example, wrist watch, calculator, and LCD screen. Thus, a realization of potential use of PANI in low-temperature-synthesized ZnS-NRs comprising piezoelectric based nanogenerator fabrication is experimentally verified so as to acquire a potential impact in sustainable energy applications. Beside this, wireless piezoelectric signal detection possibility is also worked out where a concept of self-powered smart sensor is introduced

    Cerium(III) Complex Modified Gold Electrode: An Efficient Electrocatalyst for the Oxygen Evolution Reaction

    No full text
    Exploring efficient and inexpensive electrocatalysts for the oxidation of water is of great importance for various electrochemical energy storage and conversion technologies. In the present study, a new water-soluble [Ce<sup>III</sup>(DMF) (HSO<sub>4</sub>)<sub>3</sub>] complex was synthesized and characterized by UV–vis, photoluminescence, and high-resolution X-ray photoelectron spectroscopy techniques. Owing to classic 5d → 4f transitions, an intense photoluminescence in the UV region was observed from the water-soluble [Ce<sup>III</sup>(DMF) (HSO<sub>4</sub>)<sub>3</sub>] complex. A stacking electrode was designed where self-assembled l-cysteine monolayer modified gold was immobilized with the synthesized cerium complex and was characterized by scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The resulting electrode, i.e., [Ce<sup>III</sup>(DMF) (HSO<sub>4</sub>)<sub>3</sub>]–l-cysteine-Au stacks shows high electrocatalytic water oxidation behavior at an overpotential of η ≈ 0.34 V under neutral pH conditions. We also demonstrated a way where the overpotential is possible to decrease upon irradiation of UV light

    DNA-Assisted β‑phase Nucleation and Alignment of Molecular Dipoles in PVDF Film: A Realization of Self-Poled Bioinspired Flexible Polymer Nanogenerator for Portable Electronic Devices

    No full text
    A flexible nanogenerator (NG) is fabricated with a poly­(vinylidene fluoride) (PVDF) film, where deoxyribonucleic acid (DNA) is the agent for the electroactive β-phase nucleation. Denatured DNA is co-operating to align the molecular −CH<sub>2</sub>/–CF<sub>2</sub> dipoles of PVDF causing piezoelectricity without electrical poling. The NG is capable of harvesting energy from a variety of easily accessible mechanical stress such as human touch, machine vibration, football juggling, and walking. The NG exhibits high piezoelectric energy conversion efficiency facilitating the instant turn-on of several green or blue light-emitting diodes. The generated energy can be used to charge capacitors providing a wide scope for the design of self-powered portable devices

    Self-Poled Transparent and Flexible UV Light-Emitting Cerium Complex–PVDF Composite: A High-Performance Nanogenerator

    No full text
    Cerium­(III)-<i>N</i>,<i>N</i>-dimethylformamide-bisulfate [Ce­(DMF)­(HSO<sub>4</sub>)<sub>3</sub>] complex is doped into poly­(vinylidene fluoride) (PVDF) to induce a higher yield (99%) of the electroactive phases (β- and γ-phases) of PVDF. A remarkable enhancement of the output voltage (∼32 V) of a nanogenerator (NG) based on a nonelectrically poled cerium­(III) complex containing PVDF composite film is achieved by simple repeated human finger imparting, whereas neat PVDF does not show this kind of behavior. This high electrical output resembles the generation of self-poled electroactive β-phase in PVDF due to the electrostatic interactions between the fluoride of PVDF and the surface-active positive charge cloud of the cerium complex via H-bonding and/or bipolar interaction among the opposite poles of cerium complex and PVDF, respectively. The capacitor charging capability of the flexible NG promises its applicability as piezoelectric-based energy harvester. The cerium­(III) complex doped PVDF composite film exhibit an intense photoluminescence in the UV region, which might be due to a participation of electron cloud from negative pole of bipolarized PVDF. This fact may open a new area for prospective development of high-performance energy-saving flexible solid-state UV light emitters
    corecore