10 research outputs found

    The Black Hole Mass - Stellar Velocity Dispersion Relationship for Quasars in the Sloan Digital Sky Survey Data Release 7

    Full text link
    We assess evolution in the black hole mass - stellar velocity dispersion relationship (M-sigma relationship) for quasars in the Sloan Digital Sky Survey Data Release 7 for the redshift range 0.1 < z < 1.2. We estimate the black hole mass using the "photoionization method," with the broad Hbeta or Mg II emission line and the quasar continuum luminosity. For the stellar velocity dispersion, we use the narrow [O III] or [O II] emission line as a surrogate. This study is a follow-up to an earlier study in which we investigated evolution in the M-sigma relationship in quasars from Data Release 3. The greatly increased number of quasars in our new sample has allowed us to break our lower-redshift subsample into black hole mass bins and probe the M-sigma relationship for constant black hole mass. The M-sigma relationship for the highest-mass (log M > 9 solar masses) and lowest-mass (log M < 7.5 solar masses) black holes appears to evolve significantly, however most or all of this apparent evolution can be accounted for by various observational biases due to intrinsic scatter in the relationship and to uncertainties in observed quantities. The M-sigma relationship for black holes in the middle mass range (7.5 < log M < 9 solar masses) shows minimal change with redshift. The overall results suggest a limit of +/- 0.2 dex on any evolution in the M-sigma relationship for quasars out to z ~ 1 compared with the relationship observed in the local universe. Intrinsic scatter may also provide a plausible way to reconcile the wide range of results of several different studies of the black hole - galaxy relationships.Comment: 8 pages, 6 figures, submitted to Ap

    Double-Peaked Narrow-Line Active Galactic Nuclei. II. The Case Of Equal Peaks

    Get PDF
    Active galactic nuclei (AGNs) with double-peaked narrow lines (DPAGNs) may be caused by kiloparsec-scale binary AGNs, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGNs in which the two narrow-line components have closely similar intensity as being especially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGNs from Smith et al., the "equal-peaked" objects (EPAGNs) have [Ne V]/[O III] ratios lower than for a control sample of non-double-peaked AGNs. This is unexpected for a pair of normal AGNs in a galactic merger, but may be consistent with [O III] emission from a rotating ring with relatively little gas at small radii. Also, [O III]/H beta ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.University Cooperative Society of the University of Texas at AustinJane and Roland Blumberg Cenntenial Professorship in AstronomyAlfred P. Sloan FoundationNational Aeronautics and Space AdministrationNational Science FoundationU.S. Department of EnergyJapanese MonbukagakushoMax Planck SocietyUniversity of ChicagoInstitute for Advanced StudyJapan Participation GroupJohns Hopkins UniversityKorean Scientist GroupLos Alamos National LaboratoryMax-Planck-Institute for Astronomy (MPIA)Max-Planck-Institute for Astrophysics (MPA)New Mexico State UniversityUniversity of PittsburghUniversity of PortsmouthPrinceton UniversityUnited States Naval ObservatoryUniversity of WashingtonFermilabAstronom

    In Search Of The Largest Velocity Dispersion Galaxies

    Get PDF
    We present Hobby-Eberly Telescope (HET) observations for galaxies at redshift z 500 km s(-1) by the local M-center dot sigma(*) relationship. This suggests either that QSO black hole masses are overestimated or that the black hole-bulge relationship changes at high black hole mass. The latter option is consistent with evidence that the increase in sigma(*) with luminosity levels off for the brightest elliptical galaxies.Jane and Roland Blumberg Centennial Professorship in AstronomyNASA LTSA-NNG06GC19GGeorg-August-Universiat GottingenSloan FoundationNational Aeronautics and Space AdministrationNational Science FoundationUS Department of EnergyJapanese Monbukagakusho, and the Max Planck SocietyAstrophysical Research Consortium (ARC)Stanford UniversityLudwig-MaximiliansUniversitat MunchenAstronom
    corecore