13 research outputs found

    Hemorrhagic pneumonia in mink caused by Pseudomonas aeruginosa

    Get PDF

    Polarisation of Major Histocompatibility Complex II Host Genotype with Pathogenesis of European Brown Hare Syndrome Virus.

    Get PDF
    A study was conducted in order to determine the occurrence of European Brown Hare Syndrome virus (EBHSV) in Denmark and possible relation between disease pathogenesis and Major Histocompatibility Complex (MHC) host genotype. Liver samples were examined from 170 brown hares (hunted, found sick or dead), collected between 2004 and 2009. Macroscopical and histopathological findings consistent with EBHS were detected in 24 (14.1%) hares; 35 (20.6%) had liver lesions not typical of the syndrome, 50 (29.4%) had lesions in other tissues and 61 (35.9%) had no lesions. Sixty five (38.2%) of 170 samples were found to be EBHSV-positive (RT-PCR, VP60 gene). In order to investigate associations between viral pathogenesis and host genotype, variation within the exon 2 DQA gene of MHC was assessed. DQA exon 2 analysis revealed the occurrence of seven different alleles in Denmark. Consistent with other populations examined so far in Europe, observed heterozygosity of DQA (H o = 0.1180) was lower than expected (H e = 0.5835). The overall variation for both nucleotide and amino acid differences (2.9% and 14.9%, respectively) were lower in Denmark than those assessed in other European countries (8.3% and 16.9%, respectively). Within the peptide binding region codons the number of nonsynonymous substitutions (dN) was much higher than synonymous substitutions (dS), which would be expected for MHC alleles under balancing selection. Allele frequencies did not significantly differ between EBHSV-positive and -negative hares. However, allele Leeu-DQA*30 was detected in significantly higher (P = 0.000006) frequency among the positive hares found dead with severe histopathological lesions than among those found sick or apparently healthy. In contrast, the latter group was characterized by a higher frequency of the allele Leeu-DQA*14 as well as the proportion of heterozygous individuals (P = 0.000006 and P = 0.027). These data reveal a polarisation between EBHSV pathogenesis and MHC class II genotype within the European brown hare in Denmark

    Pilot testing the EARS-Vet surveillance network for antibiotic resistance in bacterial pathogens from animals in the EU/EEA

    Get PDF
    IntroductionAs part of the EU Joint Action on Antimicrobial Resistance (AMR) and Healthcare-Associated Infections, an initiative has been launched to build the European AMR Surveillance network in veterinary medicine (EARS-Vet). So far, activities included mapping national systems for AMR surveillance in animal bacterial pathogens, and defining the EARS-Vet objectives, scope, and standards. Drawing on these milestones, this study aimed to pilot test EARS-Vet surveillance, namely to (i) assess available data, (ii) perform cross-country analyses, and (iii) identify potential challenges and develop recommendations to improve future data collection and analysis.MethodsEleven partners from nine EU/EEA countries participated and shared available data for the period 2016–2020, representing a total of 140,110 bacterial isolates and 1,302,389 entries (isolate-antibiotic agent combinations).ResultsCollected data were highly diverse and fragmented. Using a standardized approach and interpretation with epidemiological cut-offs, we were able to jointly analyze AMR trends of 53 combinations of animal host-bacteria–antibiotic categories of interest to EARS-Vet. This work demonstrated substantial variations of resistance levels, both among and within countries (e.g., between animal host species).DiscussionKey issues at this stage include the lack of harmonization of antimicrobial susceptibility testing methods used in European surveillance systems and veterinary diagnostic laboratories, the absence of interpretation criteria for many bacteria–antibiotic combinations of interest, and the lack of data from a lot of EU/EEA countries where little or even surveillance currently exists. Still, this pilot study provides a proof-of-concept of what EARS-Vet can achieve. Results form an important basis to shape future systematic data collection and analysis

    Effect of infectious dose and season on development of hemorrhagic pneumonia in mink caused by Pseudomonas aeruginosa

    No full text
    Hemorrhagic pneumonia is an acute and fatal disease of farmed mink caused by Pseudomonas aeruginosa. The pathogenesis of this disease has not yet been resolved. Mink are the only animals known to be susceptible to acute, contagious, and fatal lung infections caused by P. aeruginosa. The purpose of this study was to investigate the correlation between dose-response and season of infection and to clarify whether Danish mink are carriers of P. aeruginosa on their nasal mucosa during the season for hemorrhagic pneumonia. To elucidate the pathogenesis of the disease, an infectious dose-response trial was carried out on adult mink and mink kits, both in the season for hemorrhagic pneumonia (November) as well as out of season (July). It proved difficult to infect mink via the intra-nasal route. Only 4 out of 60 infected mink developed clinical disease and were euthanized, all of them in November, illustrating that predisposing factors in the mink itself and not infectious dose might be crucial for disease development. We were able to culture P. aeruginosa from the nasal cavity of the clinically healthy experimental mink 8 d after inoculation. This indicated that the mink can carry P. aeruginosa on their nasal mucosa without developing the disease. It was not possible, however, to culture P. aeruginosa from the nasal cavity of clinically healthy mink obtained from farms in November, which indicates that the organism is not a normal part of the nasal mucosal flora of mink
    corecore